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Preface

This book introduces the reader to the two most fundamental concepts of algebraic
topology: the fundamental group and homology. We shall take a modern viewpoint
so that we begin the course by studying basic notions from category theory. The
fundamental group is afterwards treated as a special case of the fundamental
groupoid. Accordingly, we first prove van Kampen’s theorem in a categorical
version due to R. Brown and then explain how to actually compute the fundamental
group of an attaching space. We move on to present homology. To convey the idea,
we construct simplicial homology and motivate the Eilenberg–Steenrod axioms
of a homology theory. Next, we construct singular homology and show that it
satisfies the axioms. Afterwards, we develop machinery for computing homology
theories, give example calculations, and see some applications such as the Brouwer
fixed point theorem and the Borsuk–Ulam theorem. Finally, we introduce cellular
homology for CW complexes. As the concluding result, we show that the Eilenberg
Steenrod axioms determine ordinary homology on CW complexes.

We assume the reader has taken an introductory course on topology and is
familiar with point set topological concepts, the definition of the fundamental
group, and covering theory. Such a course will certainly have covered the quotient
topology, but since this concept is of fundamental importance for our purposes, we
have decided to include a recap in Appendix A. Elementary algebra will likewise
be applied throughout the text. In particular, we will work with modules over
commutative rings and on rare occasions also with their tensor products. Each
chapter ends with a couple of exercises. Some of them are not only meant to provide
a test ground for working with the new concepts but they also establish additional
facts and terminology which are helpful to know in the given context.

A myriad of excellent books on algebraic topology are available in the market.
Some texts, for example, [29], choose a formal presentation and are well suited
to continue one’s curriculum with a course on homotopy theory. Others, like [8]
are more geometrically minded and might be a better choice for subsequent
specialization in low-dimensional topology. What this text tries to accomplish is
to neither shy away from abstract concepts nor from providing geometric intuition
or doing easy calculations, and at the same time do justice to the series and be a
compact textbook: We present only as much material as we found reasonable to
cover in a first semester graduate course on algebraic topology. The six chapters
are divided into five sections each, so that in a typical 15-week semester with two
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vi Preface

meetings a week, one should cover one section per lecture on average. This is
however a rough estimate as some sections are more substantial than others so that
the blackboard presentation will need some shortcuts. However, we urge the lecturer
not to try and skip the technical appearing Sect. 2.3 on cofibrations and homotopy
pushouts. It secretly provides as much homotopy theory as we deem necessary for
the correct presentation of the results in the ensuing chapters.

As another remark to the lecturer, let me point out a well-known dilemma when
aiming for the uniqueness theorem of ordinary homology. At some moment, one
will have to know that πn(S

n) ∼= Z or more precisely that [Sn, Sn] ∼= Z meaning
homotopy classes of maps Sn → Sn are classified by degree. This theorem just
has no quick and easy proof. It is interesting to see how other introductory texts
on algebraic topology circumvent this problem. For example, tom Dieck in his
monograph [29] develops homotopy theory first, before introducing homology, so
that the fact πn(S

n) ∼= Z is available once it is needed. Hatcher in [8] takes the
more classic route of treating homology first and simply waits with the proof of
the uniqueness theorem until after developing homotopy theory [8, Theorem 4.59].
Lück advances quickly to the uniqueness theorem [18, Satz 3.53] by taking the
Freudenthal suspension theorem for granted. In this text, we suggest yet another
road to resolve the issue and prove the simplicial approximation theorem as part
of the chapter on simplicial homology which allows us to show πn(S

n) ∼= Z by
a lemma given in [4, Lemma 11.13]. This has the virtue that the introduction of
simplicial complexes serves more than only a didactic purpose.

The used background sources are as follows: Chaps. 1 and 2 loosely follow the
presentation in [19, Chapter 2], though Chap. 1 gives a more extensive introduction
to categorical concepts, and Sect. 2.3 incorporates material appearing in [4, 26, 29].
Chapter 3 is partly based on [8] with the section on simplicial approximation
drawing from [20]. The material of Chap. 4 follows the default treatment and can for
example be found in [8]. References for Chap. 5 are again [4] and [8], though some
proofs are adapted to the more formal notion of cofibration instead of Hatcher’s
“good pairs.” The main reference for the final Chap. 6 is [18], but some proofs have
been revised considerably.

Additionally, I want to thank Roman Sauer for providing me with his handwritten
lecture notes [21] which have served as an overall fundament of the course. I am
moreover indebted to David Bückel for taking live LATEXnotes when I first taught
the material of this course so that I could thereafter simply extend his notes to the
text at hand. Finally, I am grateful to Moritz Kerz for suggesting the inclusion of
these notes into the Birkhäuser Compact Textbooks in Mathematics series. Without
any one of these three, the book would not have come into being.

Düsseldorf, Germany Holger Kammeyer
December 5, 2021
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1Basic Notions of Category Theory

Let us start the text with an easy question: Is the two dimensional sphere S2

homeomorphic to the two dimensional torus T
2? Both spaces are connected,

compact 2-dimensional manifolds, and hence indistinguishable from the point set
topological point of view. But there are compelling intuitive ideas why these spaces
should be distinct: Consider a rubber band in T2 fixed at some point x0 ∈ T

2. If this
rubber band is embedded in such a way that it winds once around the “hole” in the
torus, as pictured on the right in Fig. 1.1, there seems to be no way whatsoever to
continuously deform this band within T

2 to the point x0. In the sphere, however, it
appears to be an easy task to contract a rubber band to a point, no matter how it is
initially embedded.

Algebraic topology is the art of making these thoughts precise. If S2 was
homeomorphic to T

2, then we would have π1(S
2, x0) ∼= π1(T

2, x0). However,
π1(S

2, x0) = {1} and π1(T
2, x0) ∼= Z×Z. So S2 is not homeomorphic to T2. Here,

the fundamental group defines a functor from the category of (pointed) topological
spaces to the category of groups. To a large extent, algebraic topology is about
constructing functors from categories of topological spaces to algebraic categories
like groups, abelian groups, K-vector spaces, and R-modules.

Category theory provides vocabulary to formulate the transition of topological
questions into algebraic problems in a precise and consistent manner. This is why
it has long become the gold standard to develop algebraic topology in its terms. In
this first chapter we present precisely as much of this language as we shall employ
in the course.

1.1 Categories

In the first few semesters of studying math, one realizes that many constructions
and arguments pop up repeatedly in different contexts. For instance, products are
defined in virtually the same way, no matter whether we are dealing with products of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 1 Basic Notions of Category Theory

Fig. 1.1 Rubber bands embedded in S2 and T
2

groups, rings, or vector spaces. This raises the desire to explain the term “product”
once and for all in an abstract fashion that would specialize to all the particular
cases needed in mathematics. But to come up with a meaningful abstract definition
of “X × Y ,” it is indispensable to first convey in one way or another that “X” and
“Y ” should be two “instances” of the same “type”; or we had better say two objects
in the same category.

Definition 1.1
A category C consists of a class of objects ob(C) and a class ofmorphisms HomC(X, Y )

associated with any two objects X, Y ∈ ob(C). Morphisms are also called arrows

(f : X → Y ) ∈ HomC(X, Y )

from the domain X to the codomain Y . They are subject to two conditions.

(i) Two morphisms can be composed if the codomain of the former is the domain of the
latter. Given f : X → Y and g : Y → Z, we obtain g ◦ f : X → Z and composition is

associative: for X
f−→ Y

g−→ Z
h−→ W , we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

(ii) For every object X ∈ ob(C), there exists an identity morphism idX ∈ HomC(X, X),
such that for all f : X → A and g : B → X we have f ◦ idX = f and idX ◦ g = g.

Remark 1.2
The reader might be confused by the word “class” in the definition. How come we
cannot use the familiar term “set”? The reason is that also sets themselves are supposed
to form a category, and talking about the “set of all sets” is logically troublesome. It
admittedly looks shaky to try and overcome this issue by using a different word. But
for our purposes, we merely think of “class” as a manner of speaking. Saying “Let
X be from the class of sets” shall be equal in meaning to saying “Let X be a set”; a
phrase that no one would ever complain about. A more foundational discussion would
leave the realm of algebraic topology.
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Table 1.1 Examples of categories and their objects and morphisms

Category Objects Morphisms Isomorphisms

Set Sets Maps Bijections

K-vect K-vector spaces K-linear maps K-isomorphisms

R-mod R-modules R-linear maps R-isomorphisms

Group Groups Group homomorphisms Group isomorphisms

Ab Abelian groups Group homomorphisms Group isomorphisms

Top Topological spaces Continuous maps Homeomorphisms

Top• Pointed topological
spaces

Continuous base point
preserving maps

Base point preserving
homeomorphisms

HoTop Topological spaces Homotopy classes of
continuous maps

Homotopy classes of
homotopy equivalences

HoTop• Pointed topological
spaces

Pointed homotopy classes of
continuous base point
preserving maps

Pointed homotopy classes
of base point preserving
homotopy equivalences

Top(2) Pairs (X,A) of a
topological space X

and a subspace A

Continuous maps that restrict
to a map of the subspaces

Homeomorphisms that
restrict to a
homeomorphism of the
subspaces

Morphisms whose domain coincides with the codomain are called endomor-
phisms. A morphism f : X → Y in a category C is called an isomorphism if there
is a morphism g : Y → X, called the inverse of f , such that g ◦ f = idX and
f ◦ g = idY . If f is an isomorphism and g1, g2 are two inverses, then

g2 = g2 ◦ idY = g2 ◦ (f ◦ g1) = (g2 ◦ f ) ◦ g1 = idX ◦g1 = g1.

So inverses, if they exist, are unique. An endomorphism that is also an isomorphism
is called an automorphism. Examples of categories abound. We gather the exam-
ples that are most relevant for algebraic topology in Table 1.1.

Let us make sure we understand the arrows in the homotopy category HoTop
and the pointed homotopy category HoTop•. We have

HomHoTop(X, Y ) = {f : X → Y, f continuous}/�

where the equivalence relation f � g is called homotopy. It means there exists
a family of maps Ht : X → Y for t ∈ I = [0, 1] defining a continuous map
H : X × I → Y such that H0 = f and H1 = g. The composition is given by
Hom(X, Y ) × Hom(Y, Z) → Hom(X,Z), ([f ], [g]) �→ [g ◦ f ] where now “◦”
denotes the composition of maps (the composition in Set). One easily checks this
is well-defined. Any representative f : X → Y of an isomorphism [f ] in HoTop
is called a homotopy equivalence. So a homotopy equivalence f : X → Y has a
homotopy inverse, meaning a continuous map g : Y → X such that g ◦ f � idX

and f ◦ g � idY . In the special case that f is the inclusion of a subspace and that
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g is a retraction, meaning g ◦ f = idX holds on the nose, the subspace X is called
a deformation retract of Y and the homotopy H from f ◦ g to idY is called a
deformation retraction. If H fixes the subspace X pointwise throughout, then H

is called a strong deformation retraction and X is called a strong deformation
retract of Y . A space is called contractible if it contains one of its points as
a deformation retract (and is in particular nonempty). Equivalently, a space is
contractible if it is homotopy equivalent to a one point space “•”. There exists a
contractible space that does not strongly deformation retract onto any of its points [8,
Ex. 0.6]. Morphisms in the pointed homotopy category are given by

HomHoTop•((X, x0), (Y, y0)) = {f : X → Y | f continuous}/�

where now f � g means there exists a family of continuous maps Ht for t ∈ I

defining a continuous mapH : X×I → Y such thatH0 = f ,H1 = g, andHt(x0) =
y0 for each t ∈ I . Compositions are as above. Representatives of isomorphisms in
HoTop• are called pointed homotopy equivalences. Frequently, we will use the
notation • ∈ X for a fixed chosen base point. Note that arrows in the homotopy
categories cannot be evaluated in points. In other categories, it does not even make
sense to ask about evaluating arrows. A category consists of objects and arrows only,
but arrows have a direction: from domain to codomain. Therefore every category has
an “opposite” obtained by flipping all arrows.

Definition 1.3
Let C be a category. Then the opposite category is the category with reversed arrows:
ob(Cop) = ob(C) and HomCop (X, Y ) = HomC(Y,X). Composition of arrows f ◦ g in
Cop is defined by g ◦ f in C.

1.2 Functors

A category has objects and arrows with composition and identities. Functors relate
one category to another. As such, they should preserve all available structure so that
there is no alternative to the following definition.

Definition 1.4
A (covariant) functor F : C → D from a category C to a category D assigns to every
X ∈ ob(C) an object F(X) ∈ ob(D) and to every morphism f : X → Y with X, Y ∈
ob(C) a morphism F(f ) ∈ HomD(F(X),F(Y )) such that

(i) F(g ◦ f ) = F(g) ◦ F(f ) for all f ∈ HomC(X, Y ) and g ∈ HomC(Y, Z).
(ii) F(idX) = idF(X) for all X ∈ ob(C).

A contravariant functor f from C to D is a covariant functor from Cop to D. Thus F
satisfies the above properties, except that F(f ) ∈ HomD(F(Y ),F(X)) and F(g ◦ f ) =
F(f ) ◦ F(g).
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Example 1.5 The more abstract the definition, the more examples must be given.

(i) Every category C comes with an identity functor idC .
(ii) Still not very inspiring but theoretically of utmost importance are the forgetful

functors that drop either some part of the structure or some information on the objects,
like K-vect → Ab, Ab → Group, and Group → Set.

(iii) The fundamental group defines a functor π1 : Top• → Group. On objects, a pointed
space (X, x0) gives rise to the fundamental group π1(X, x0). On morphisms, an arrow
(X, x0) → (Y, y0) in Top• induces the group homomorphism π1(f ) : π1(X, x0) →
π1(Y, y0) defined by pushing loops, [γ ] �→ [f ◦ γ ].

(iv) We have functors Top → HoTop and Top• → HoTop•, which leave objects
untouched and place morphisms in their homotopy classes.

(v) Let f, g : (X, x0) → (Y, y0) be homotopic pointed maps and let H be a pointed
homotopy. For a loop γ : (I, {0, 1}) → (X, x0) representing an element of π1(X, x0),
the map (s, t) �→ H(γ (s), t) defines a pointed homotopy H : I ×I → Y from the path
f ◦ γ to the path g ◦ γ . Hence π1(f ) = π1(g). Thus the functor π1 factorizes over the
pointed homotopy category

Here we understood implicitly that functors F : C → D and G : D → E can be
composed to a functor G ◦ F : C → E .

(vi) Abelianization is a functor (−)ab : Group → Ab , which takes a group G and forms
the quotient group G �→ G/[G, G] where [G, G] is the derived subgroup generated
by all commutators g1g2g

−1
1 g−1

2 for g1, g2 ∈ G. Since a group homomorphism
sends commutators to commutators, every group homomorphism f : G → H induces
a homomorphism of abelian groups fab : Gab → Hab. We will sometimes write the
equivalence class of an element g ∈ G as [g]ab ∈ Gab.

(vii) The free vector space construction F : Set → K-vect takes a set X and forms the
vector space F(X) of all formal K-linear combinations

∑
x∈X λxx with λx ∈ K

different from zero for only finitely many x ∈ X. It is clear how addition and scalar
multiplication are defined. Hence by construction, X is a basis of F(X). A map of sets
X → Y gives a K-linear map F(X) → F(Y ) by unique K-linear extension.

(viii) Forming the dual vector space V ∗ = HomK(V,K) of a K-vector space V gives a
contravariant functor D : K-vect → K-vect. A K-linear map f : V → W defines a
K-linear map D(f ) : W∗ → V ∗ by precomposing linear forms, ϕ �→ ϕ ◦ f .

(ix) Fixing a K-vector space W , the tensor product ( · ) ⊗K W is a covariant functor
K-vect → K-vect.

Recall the construction of the tensor product V ⊗K W in the last example. One
starts with the free vector space F(V ×W) and mods out the linear subspace spanned
by all elements (λu + μv,w) − λ(u,w) − μ(v,w) for λ,μ ∈ K , u, v ∈ V , and
w ∈ W , and similarly in the other variable, to enforce the familiar distributivity and
bilinearity properties of tensors. To be pedantic, we should have applied the forgetful
functor K-vect → Set to V and W before forming the free vector space F(V ×W).
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At a first encounter, the uninitiated might wonder why one works with this quotient
of intimidatingly large spaces when one could instead pick bases {ei} and {fj } of V

and W to define V ⊗K W as the free vector spaces spanned by {ei ⊗fj }. The reason
is now apparent. We want ( · ) ⊗K W to be a functor, and a functorial construction
must not depend on arbitrary choices.

1.3 Natural Transformations

“It is not too misleading, at least historically, to say that categories are what one must define
in order to define functors, and that functors are what one must define in order to define
natural transformations.”

(Peter J. Freyd)

Certainly long before the definition of category was given, mathematicians were
aware that some isomorphisms were better than others. For example, if V is a finite
dimensional vector space, one can pick a basis and map it to the dual basis of
V ∗. The unique linear extension gives an isomorphism from V to V ∗. However,
this isomorphism comes at the cost of a choice: We had to select a basis of V to

begin with. In contrast, we get an isomorphism V
∼=−→ V ∗∗ for free: map a vector

v ∈ V to the linear form on V ∗ given by evaluating linear forms from V ∗ at v.
One might say this isomorphism arises naturally, and natural transformations
seek to capture what this naturality should mean mathematically. As an important
advantage, a “naturally defined” isomorphism will automatically be compatible with
homomorphisms. In our example, this means that for all linear maps f : V → W ,
the diagram

commutes. This observation is the basis for the following definition.

Definition 1.6
A natural transformation η : F → G of functors F ,G : C → D assigns a morphism
ηA : F(A) → G(A) in D to each A ∈ ob(C) such that

commutes for all f ∈ HomC(A,B). The morphism ηA is called the component of η at
A ∈ ob(C).
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Example 1.7 Let us first check that our example from the above discussion meets this
definition. We consider the double dual space functor DD : K-vect → K-vect, which
maps a K-linear map f : V → W to the K-linear map

f ∗∗ : V ∗∗ → W∗∗
(δ : V ∗ → K) �→ (ϕ �→ δ(ϕ ◦ f )).

We claim we have a natural transformation η : idK-vect → DD with components

ηV : V → V ∗∗, v �→
{
evv : V ∗ → K

ϕ �→ ϕ(v).

So for every f : V → W , we have to check that

commutes. Indeed, let v ∈ V and ϕ ∈ W∗. Then we obtain

f ∗∗◦ ηV (v)(ϕ) = f ∗∗(evv)(ϕ) = evv(ϕ ◦ f ) = ϕ(f (v)) = evf (v)(ϕ) = ηW ◦ f (v)(ϕ).

Example 1.8 Every groupG can be interpreted as a categoryGwith only one object, denote
it by “•”, and morphism set HomG(•, •) = G with composition given by multiplication
in G:

g1 ◦ g2 = g1g2.

Then a functor F : G → Set is the same as a G-set. The set is XF = F(•) and the action is
given by g · x := F(g)(x) for g ∈ G and x ∈ X. To convince ourselves that this defines an
action, we have to check

(i) g1 · (g2 · x) = (g1g2) · x,
(ii) e · x = x.

To see (i), we note that g1 · (g2 · x) equals

F(g1)(F(g2)(x)) = F(g1) ◦ F(g2)(x) = F(g1 ◦ g2)(x) = F(g1g2)(x) = (g1g2) · x.

To see (ii), we calculate e · x = F(e)(x) = F(id•)(x) = idF(•)(x) = idXF (x) = x.
A natural transformation η : F → G of functors F ,G : G → Set is then the same as a
G-equivariant map of G-sets. Indeed, naturality gives η(g · x) = g · η(x) for x ∈ XF and
g ∈ G.
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Definition 1.9
A natural transformation η : F → G of functors F ,G : C → D is called a natural
isomorphism, if all components ηA are isomorphisms for A ∈ C.

Be aware that the two functors idK-vect and DD from K-vect to K-vect are
not naturally isomorphic because V is not isomorphic to V ∗∗ if V is infinite-
dimensional. But they are naturally isomorphic as functors on the category of finite
dimensional K-vector spaces by the natural transformation we defined. In contrast,
the functors idK-vect and D do not even have a chance to be naturally isomorphic
because idK-vect is covariant while D is contravariant. For an example of two
covariant functors that give isomorphic objects but not naturally so, see Exercise 1.2.
With the notion of natural isomorphisms at hand, we can now define what it should
mean that two categories are equivalent.

Definition 1.10
An equivalence of categories C and D consists of functors F : C → D and G : D → C
such that F ◦ G and G ◦ F are naturally isomorphic to idD and idC , respectively.

Requiring F ◦ G = idD and G ◦ F = idC leads to the notion of isomorphism of
categories, which for most practical purposes is too much to ask for. We say that C
is dually equivalent to D if C is equivalent to Dop.

Example 1.11 Let (X, x0) be a pointed, path connected, locally path connected, and semi-
locally simply connected space. We introduce the category Cov(X,x0) whose objects are
path connected pointed covering spaces p : (Y, y0) → (X, x0) and whose morphisms are
commutative triangles

We introduce a second category Subπ1(X,x0) whose objects are subgroups of the
fundamental group π1(X, x0) and whose morphisms are inclusions. We have a functor
Char : Cov(X,x0) → Subπ1(X,x0), which on objects associates the characteristic subgroup
Char(p) = imπ1(p) with a covering map p. On morphisms, a commutative triangle of
covering maps induces an inclusion of characteristic subgroups as we see by applying the
π1-functor. The classification theorem of covering spaces now takes the elegant form that
Char is an equivalence of categories that maps regular coverings to normal subgroups.

Constructing the inverse functor basically amounts to the existence part of the proof of
the classification theorem. Given a subgroup G ⊆ π1(X, x0) we construct a covering space
XG by first forming the set of all paths in X starting at x0. Then we identify two such paths
if they have the same end point, resulting in a loop whose pointed homotopy class lies in G.
The end point map defines a covering map XG → X sending the constant path to the base
point x0. This map can be used to lift the topology from X to XG and the awkward “semi-
locally simply connected” property is necessary to ensure that fibers are discrete. It is a good
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exercise to find the natural isomorphism from XChar(·) to idCov(X,x0)
(Hint: unique path and

homotopy lifting).
Note that no two distinct objects in Subπ1(X,x0) are isomorphic and the functor X( · )

selects precisely one object from each isomorphism class of objects inCov(X,x0). Rephrasing
this, the functor X( · ) gives an algebraic description of a skeleton of Cov(X,x0). To some
extent, finding algebraic skeleta of topological categories is the big hairy audacious goal of
algebraic topology.

Example 1.12 A similar construction is familiar from field theory. The category of interme-
diate fields of a Galois extension L/K is equivalent to SubGal(L/K). The equivalence sends
K ⊆ Z ⊆ L to the subgroup of automorphisms in Gal(L/K) fixing each element of Z.
Galois extensions Z/K correspond to normal subgroups of Gal(L/K). The inverse functor
maps G ⊆ Gal(L/K) to the fixed subfield LG.

1.4 Adjunction

Every forgetful functor asks a question. What is the most general and most efficient
construction in the reverse direction? For example, take the forgetful functor
K-vect → Set. How can we efficiently turn a set into a vector space in always the
same way, without using any knowledge on the particular set? Well, we apply the
free vector space construction from Example (vii) in Sect. 1.2! We take a set and just
artificially form linear combinations of elements of the set with coefficients from K .
As another example, for the forgetful functor Ab → Group, the general efficient
reverse (reverse, not inverse!) construction is the abelianization from Example (vi)
in Sect. 1.2.

The mathematically rigorous formulation of the vague question for a “general,
efficient construction” is: Given a functor F : C → D, what is the left adjoint
functor G : D → C? Of course, we can also start with a functor G and ask for
a functor F so that G provides the most general and most efficient construction
in the reverse direction. Or in mathematical terms: “Given a functor G : D → C,
what is the right adjoint functor F : C → D?” Similarly as in the case of natural
transformation, the key to the definition is to consider all relevant morphisms at the
same time:

Definition 1.13
Let F : C → D and G : D → C be functors. We call F left adjoint to G (and G right
adjoint to F ) if for all A ∈ ob(C) and B ∈ ob(D) we have a bijection

HomD(F(A), B) ∼= HomC(A,G(B)), f �→ f

which is natural in A and B.

“Natural in A” means that for each fixed B ∈ ob(D) the two functors

HomD(F(−), B), HomC(−,G(B)) : Cop → Set
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are naturally isomorphic. Here and elsewhere, we assume C andD are locally small,
meaning that morphisms from one object to another form a set and not a proper
class. Decoding the definition, naturality in A means

ϕ ◦ f = ϕ ◦ F(f ) for ϕ ∈ HomD(F(A), B), f ∈ HomC(A′, A).

Similarly, naturality in B gives

G(g) ◦ ϕ = g ◦ ϕ for ϕ ∈ HomD(F(A), B), g ∈ HomD(B,B ′).

The word adjoint goes back to the formal similarity of the morphism set adjunction
to the defining equation of adjoint operators on Hilbert space 〈f x, y〉 = 〈x, f ∗y〉.
The concept of adjunction is not reserved for forgetful functors. For these, it is
however particularly enlightening to figure out the left adjoints.

Example 1.14 The free vector space functor F : Set → K-vect is left adjoint to the
forgetful functor G : K-vect → Set. The natural isomorphism defining the adjunction

HomK-vect(F (S), V ) ∼= HomSet(S,G(V )), f �→ f = f |S

is just given by restriction. Restriction is injective because linear maps are uniquely
determined by the values on a basis. Restriction is surjective because any map S → G(V )

can be linearly extended to a K-linear map F(S) → V . Naturality is clear from the above
formulas.

Example 1.15 Let G : Group → Set be the forgetful functor. It has a left-adjoint
F : Set → Group, which associates with a set S the so-called free group on the alphabet
S. As a set F(S) consists of all “words” such as a3b−2aab−5b5c on letters a, b, c ∈ S,
where we identify two such words if they can be obtained from one another by the obvious
cancellations and expansions, for example aa−1b = b, c2c−3 = c−1. Composition is given
by concatenation of words. The unit element is the empty word, sometimes called “e” or “1.”
Note that no two letters s1, s2 ∈ S commute in F(S): We have s1s2 �= s2s1 unless s1 = s2.

Every map S1
f→ S2 has a unique extension to a group homomorphism F(S1)

F(f )→
F(S2), which one obtains as in the example

F(f )(abc−3b) = f (a)f (b)f (c)−3f (b).

Given any group H , the adjunction yields a unique morphism εH : F(G(H)) → H , which
restricts to the identity on the set H . In fact, ε defines a natural transformation from F ◦ G to
idGroup, called the counit of the adjunction. Since εH is surjective,

εH : F(G(H))/ ker εH

∼=−−→ H

is an isomorphism. So the upshot is that every group is isomorphic to a quotient of a free
group. This is what makes free groups useful to describe general groups.
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Definition 1.16
Let S be a set and let R be a subset of F(S). The pair (S, R) is called a presentation of
the group G, if G ∼= F(S)/N (R), whereN (R) is the smallest normal subgroup of F(S),
which contains R.

The above shows that every group G has a presentation (S, R) and we use the
notation G = 〈S|R〉. Elements of S are called generators and elements of R are
called relators. So every relator r ∈ R gives rise to a relation r = e, which holds
true in G. Of course, taking the whole group as set of generators as above is rarely
a good idea. One should rather aim for efficient presentations with S and R as small
as possible. A group G is called finitely generated, if there exists a presentation
G = 〈S|R〉 with a finite set S. It is called finitely presented, if there is G = 〈S|R〉
with both S and R finite.

Example 1.17 We claim that Z2 = 〈a, b | [a, b]〉. By the adjunction, requiring a �→
(1, 0) and b �→ (0, 1) defines a unique surjective homomorphism p : F(a, b) → Z

2.
We have [a, b] ∈ kerp, hence N ([a, b]) ⊆ kerp. So p descends to a homomorphism
p : F(a, b)/N ([a, b]) → Z

2 and it remains to show that p̄ is injective. Let ā, b̄ ∈
F(a, b)/N ([a, b]) be the images of a and b and let x = ān1 b̄m1 · · · ānk b̄mk ∈ ker(p̄).
Then p(x) = 0 gives

(0, 0) = n1 · (1, 0) + m1 · (0, 1) + · · · + nk · (1, 0) + mk · (0, 1).

Thus n1 + · · · + nk = 0 and m1 + · · · + mk = 0, whence

ān1 b̄m1 · · · ānk b̄mk = ān1+···+nk b̄m1+···+mk = e.

1.5 Limits and Colimits

We now return to the problem we used to motivate the introduction of categories
in Sect. 1.1: the abstract construction of products. The key observation is that every
product (of sets, groups, topological spaces, ...) comes with projections

Definition 1.18
Let C be a category and let X, Y ∈ ob(C). A product of X and Y consists of an object
P ∈ ob(C) and morphisms prX : P → X and prY : P → Y , which are required to
be universal in the following sense. For any other object Q ∈ ob(C) with morphisms
fX : Q → X, fY : Q → Y , there exists a unique morphism f : Q → P such that
fX = prX ◦f and fY = prY ◦f .
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Since the unique morphism f is completely determined by fX and fY , it is also
customary to write f = fX × fY or f = (fX, fY ). Products might not exist in C
(think of the category of fields), but if they do, they are unique up to a unique
isomorphism, which transforms the projections into one another. This can be seen
as follows. Say

are products ofX and Y . Since P is a product, we have a unique morphism g : P ′ →
P such that

Similarly, since P ′ is a product, there exists a unique morphism f : P → P ′ with

We can compose the two diagrams as follows:
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For the outer part of the diagram, uniqueness in the universal property of P says
that we must have g ◦ f = idP . Composing the diagrams in reverse order, we get
f ◦g = idP ′ . Norman Steenrod has coined the term abstract nonsense for this type
of purely categorical arguments. So the universal property determines a product
uniquely in the strongest possible sense. It is however conceptually important to
keep in mind that the product of objects X and Y is a concrete object P with
projection maps pX and pY (not an isomorphism class of objects).

Example 1.19 In Set, K-vect, Group, R-mod, Top, and HoTop, the categorical product
of objects X and Y is the ordinary product X × Y with the usual projections. A little caution
is necessary in Top(2). The categorical product of (X, A) and (Y, B) is (X × Y,A × B) but
some authors use the notation (X, A)× (Y, B) to refer to (X×Y, (X×B)∪ (A×Y )) instead.

The notation f × g is often also used for arrows f : A → X and g : B → Y

with different domain in a category C with products. In that case, it should be read
as shorthand notation for what would categorically be (f ◦ prA) × (g ◦ prB). In the
categories from Example 1.19, this just means that f × g : A × B → X × Y is
defined by (f × g)(a, b) = (f (a), g(b)). To avoid any potential for confusion, it is
best practice to always state the domain of f × g explicitly.

It turns out that products are only one special case of a more general construction,
which goes by the name of pullbacks.

Definition 1.20
A pullback of a diagram

in a category C consists of an object P ∈ ob(C) and morphisms pX : P → X and
pY : P → Y such that the square
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commutes and satisfies the following universal property. For every other Q ∈ ob(C)

with morphisms fX : Q → X and fY : Q → Y such that

commutes, there exists a unique morphism f : Q → P such that fX = pX ◦ f and
fY = pY ◦ f .

The same abstract nonsense as above shows that pullbacks, if they exist, are
unique up to a unique isomorphism that mediates between the pullback squares.

Example 1.21 In Set the pullback of any diagram

always exists. It can be constructed as

P = {(x, y) ∈ X × Y : s(x) = t (y)}
together with the morphisms pX and pY given by restricting the projections of the product

X × Y . Given a second diagram X
fX← Q

fY→ Y as above, the required morphism f : Q → P

is given by

f (q) = (fX(q), fY (q))

for q ∈ Q.
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Example 1.22 In Top, the pullback is the same as above set-theoretically and P carries the
subspace topology of the product topology.

Let B be a topological space. Dropping base points from the category introduced
in Example 1.11, we obtain the categoryCovB of covering spaces overB. So objects
are covering spaces E → B and morphisms are commutative triangles

Pullback along a continuous map ϕ : B ′ → B defines a functor CovB → CovB ′ .
On objects, the functor assigns Eϕ → B ′ to E → B where Eϕ → B ′ sits in the
pullback square

(1.23)
which is obtained as in Example 1.22. On morphisms we obtain

where the arrow fϕ is defined by the universal property of the pullback square that
occurs as the front face of the commutative cube

We have to check that Eϕ → B ′ is indeed a covering space. If ϕ happens to
be the inclusion of a subspace, Eϕ = p−1(B ′) is the restricted covering. You will
handle the general case in Exercise 1.4 where a hint is given.
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The notion of pullback allows for yet another generalization that we introduce
over three definitions. First, we still owe a formal definition of a diagram, a notion
that we already employed several times. A category is called small if both all objects
and all morphisms form a set and not a proper class.

Definition 1.24
Let C be a category and let I be a small category. A functorD : I → C is called a diagram
of shape I .

Other authors would call this a “small diagram,” but we will have no reason to
consider any other diagrams so that we require smallness right away. The category
I in the diagram is also called index category. It is irrelevant how objects and
morphisms are concretely realized in I , all that matters is the directed graph of all
morphisms it defines, which thus forms the “shape” of the diagram.

Example 1.25 The above triangle of covering maps would be a diagram in Top

Here the left hand diagram is a complete description of the category I . The category consists
of three objects, hence also three identity morphisms that are left out in the picture, and three
more arrows where two of them compose to the third.

Definition 1.26
A cone on the diagram D : I → C consists of an object C ∈ ob(C) and morphisms

(C
fi−→ D(i))i∈ob(I )

such that the triangle

commutes for all morphisms i → j in I .

The terminology is self-explanatory. One should think of the diagram as lying
out flat on a table top, whereas the cone object C hovers in some distance above
the table top and comes with arrows to all objects in the diagram so that the whole
formation looks like a cone.
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Definition 1.27
A limit (L

pi−→ D(i))i∈ob I of a diagram D : I → C is a cone on D which is universal

in the following sense. For every other cone (C
fi−→ D(i))i∈ob I there exists a unique

morphism f : C → L such that fi = pi ◦ f for all i ∈ ob(I ). Thus the diagram

commutes for all morphisms i → j in I .

As a concept defined by a universal property, also limits are unique up to a unique
isomorphism mediating between the cones. We introduce the notation L = limD.

Example 1.28 The product of X, Y ∈ ob(C) is the limit of the diagram

• • D−−−−−→ X Y.

More generally, possibly infinite products can be formed by taking any small discrete

category (with only identity morphisms) as index category I . The pullback of X
s→ Y

t← Z

in C is the limit of the diagram

Example 1.29 The limit of the diagram

is called the equalizer e : E → X of f and g. The universal property is captured by the
diagram
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In words, for every morphism h : Z → X, there exists a unique arrow h : Z → E such that
h = e ◦ h. In Set, the equalizer of f and g is just the inclusion e : E ⊆ X of the subset
E = {x ∈ X : f (x) = g(x)}. Indeed, any cone h : Z → X satisfies f ◦ h = g ◦ h, so h maps
toE, hence factorizes uniquely through the inclusion e. In Top, the same argument shows that
the equalizer is the inclusion e : E ⊆ X as subspace, meaningE carries the subspace topology
of X. If moreover Y is Hausdorff, then the equalizer e : E ⊆ X is a closed embedding. To
see that, just note that the Hausdorff property of Y says that the diagonal subspace D =
{(y, y) : y ∈ Y } ⊆ Y × Y is closed in the product topology, hence so is k−1(D) = E ⊆ X

where k : X → Y × Y is the continuous product map defined by k(x) = (f (x), g(x)).
Of course the equalizer concept generalizes in a straightforward manner to more than two
arrows.

Unraveling the concepts, we see that the pullback in Example 1.28 is nothing but
the equalizer of s ◦ prX : X × Z → Y and t ◦ prZ : X × Z → Y . It turns out that
this gives the correct intuition for general limits, too. If a category C has all binary
equalizers and arbitrary products, then the limit of a diagram D : I → C can be
constructed as the equalizer of the two arrows

where the second product ranges over all morphisms in I and at the morphism
f : j → k, the arrow s has component D(f )◦prD(j) while t has component prD(k).
This construction shows that a category has all limits if and only if it has all products
and binary equalizers.
Categorical notions have dual notions obtained by reversing arrows. Dual to the
notion of a cone on D : I → C is the notion of a cocone from D where the diagram

Definition 1.30
A colimit (D(i) → L)i∈I is a cocone that is universal in the sense that every other cocone
(D(i) → C)i∈ob I of D factorizes uniquely through L as indicated in the diagram
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Colimits are unique up to a unique isomorphism mediating between cocones. We
write L = colimD. The colimit of the diagram

• • D−−−−→ X Y

is called the coproduct X � Y of X and Y . Thus X � Y comes with morphisms

X
iX→ X � Y and Y

iY→ X � Y satisfying the universal property

Again, products with several, including infinitely many factors can be formed by
means of larger discrete index categories.

Example 1.31 In Set, the coproduct of X and Y always exists and is given by the disjoint
union of X and Y . In Top and HoTop, the coproduct of X and Y is the familiar topological
sum of X and Y . In Top• and HoTop•, the coproduct of (X, •) and (Y, •) is the one point
union or wedge sum (X ∨ Y, •).

Example 1.32 In R-mod, the coproduct of M and N is the direct sum M ⊕ N with the
inclusions given by iM(m) = m ⊕ 0 and iN (n) = 0 ⊕ n. As objects we have M ⊕ N ∼=
M×N but be aware that for an infinite index category I , coproducts

⊕
i∈ob I Mi and products∏

i∈ob I Mi are not isomorphic in general. Coproducts consist only of finite formal sums of
elements xi ∈ Mi .

We will write fX

∐
fY for the unique arrow X

∐
Y → Q determined by fX

and fY and correspondingly “fX ∨ fY ” or “fX ⊕ fY ” when working in concrete
categories like Top• or K-vect. Dually to the case of products, these notations are
sometimes also used for arrows with different codomains f : X → A and g : Y →
B in which case f

∐
g denotes what would categorically be (iA ◦ f )

∐
(iB ◦ g).

Example 1.33 For morphisms fM : M → Q and fN : N → Q in R-mod, we have (fM ⊕
fN)(m⊕n) = fM(m)+fN(n). Indeed, taking this formula as the definition of the morphism
fM ⊕ fN : M ⊕ N → Q, we have

(fM ⊕ fN)(iM(m)) = (fM ⊕ fN)(m ⊕ 0) = fM(m) + fN(0) = fM(m)
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and similarly for iN , so the required commutativity relations hold true. This proves the
existence part of the universal property. If h : M ⊕ N → Q is another morphism satisfying
the commutativity relations of the coproduct, we have

h(m ⊕ n) = h(m ⊕ 0 + 0 ⊕ n) = h(m ⊕ 0) + h(0 ⊕ n) = h(iM(m)) + h(iN (n)) =
= fM(m) + fN(n) = (fM ⊕ fN)(m ⊕ n)

which proves the uniqueness part of the universal property. These considerations also justify
the notation fM + fN instead of fM ⊕ fN and accordingly fM − fN for what would
categorically be fM ⊕ (−fN).

Lemma 1.34
Coproducts exist inGroup. The coproduct ofG andH is called the free productG∗H

ofG andH . IfG ∼= 〈SG|RG〉 andH ∼= 〈SH |RH 〉, thenG∗H ∼= 〈SG�SH |RG�RH 〉.

Proof We have to verify the universal property. To this end, consider the commutative
diagram

The two curved arrows ending in K are given. From these we need to construct the lower
vertical arrow ending in K and show that it is unique. To do so, we precompose the curved
arrows with the canonical projections F(SG) → 〈SG|RG〉 and F(SH ) → 〈SH |RH 〉 to
obtain the two morphisms f : F(SG) → K and g : F(SH ) → K . Following the forgetful-
free adjunction Group ←→ Set, the arrows f and g in Group restrict to arrows SG →
K and SH → K in Set. These two factorize over a unique map SG � SH → K by the
universal property of the coproduct in Set. Again by the forgetful-free adjunction, this map
extends uniquely to a group homomorphism u : F(SG � SH ) → K through which f and g

factorize. Since f and g also factorize over the groups 〈SG|RG〉 and 〈SH |RH 〉, respectively,
the morphism u factorizes over a morphism u : 〈SG � SH |RG � RH 〉 → K . Since u and
hence u are determined on the generating sets SG and SH by f and g, the morphism u is
uniquely determined. ��
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The colimit of a diagram

is called a pushout in C. Thus the pushout consists of an object Z ∈ ob(C) with

morphisms X
jX−→ Z, Y

jY−→ Z such that

commutes and such that for any other Q ∈ ob(C) that sits in a commutative square

there exists a unique morphism f : Z → Q with fX = f ◦ jX and fY = f ◦ jY .

Lemma 1.35
Pushouts exist in Top and are given by

where “∼” is the finest equivalence relation on X � Y such that s(a) ∼ t (a) for all
a ∈ A and X � Y/∼ is endowed with the quotient topology with respect to “∼”.
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Proof We have to construct the dashed arrow in

and show it is unique. The coproduct map fX �fY : X�Y −→ Q sends equivalent points in
X�Y to the same point in Q, hence it descends to a continuous map f : X�Y/∼ −→ Q by
the universal property of the quotient topology in Appendix A, so f provides such a dashed
arrow. On the other hand, any dashed arrow as above factorizes fX � fY through X � Y/∼,
so it is equal to f by the uniqueness statement of the universal property. ��

In typical situations, the map s will be the inclusion of a subspace in which
case we call X

∐
Y/ ∼ an attaching space or adjunction space. Some particular

examples of adjunction spaces in Top are of fundamental importance in algebraic
topology, so let us study them in some detail.

Example 1.36 (Collapsing a Subspace) For a subspace A ⊆ X we define the collapsed
space X/A by the pushout

(1.37)
The subspace A becomes a single point in the collapsed space X/A, which can serve as a
base point. Hence collapsing the subspace defines a functor Top(2) → Top•. Note that for
A = ∅, we obtain X/A = X

∐ •. So X/∅ is the space obtained from X by adding a disjoint
base point. In particular, ∅/∅ = •. Another important example is the cone CX of a space X

defined by

CX = X × [0, 1] /X × {1}.

The new base point in CX is the “cone tip.” It is a strong deformation retract of CX. So by
the base inclusion X → CX sending x ∈ X to [(x, 0)] ∈ CX, every space embeds in a
contractible one. We have Dn/Sn−1 ∼= Sn and CSn ∼= Dn+1.
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Example 1.38 (Mapping Cylinders) For a morphism f : X → Y in Top, we define the
mapping cylinder Mf of f by the pushout

where i0(x) = (x, 0). The map if : X → Mf defined by if (x) = f (x, 1) includes X as a
closed subspace of Mf . This is intuitively clear but let us not get sloppy early on and give
a formal argument instead. Since if is a continuous injection, we only need to show every
closed C ⊆ X has closed image if (C) ⊆ Mf . By construction, the map f � j0 : X ×
[0, 1] � Y → Mf is a quotient map. Since C ⊆ X is closed, so is the subset C × {1} =
(f � j0)

−1(if (C)) of X × [0, 1] � Y . Hence if (C) ⊆ Mf is closed by Lemma A.1. The
universal property of the defining pushout yields a retraction

such that rf ◦ j0 = idY and j0 ◦ rf �H idMf
with H : Mf × I → Mf defined on im f

by H(([x, t], s)) = [x, s · t] and on im j0 by H([y], s) = [y]. Hence rf is a homotopy
equivalence (in fact, H is a strong deformation retraction) and for x ∈ X, we have

rf (if (x)) = rf (f (x, 1)) = f (prX(x, 1)) = f (x).

Thus we have proven that the category Top has the peculiar property that every arrow is the
composition of a closed inclusion and a homotopy equivalence,

Example 1.39 (Mapping Cones) Combining the last two constructions, we obtain the
mapping cone of f : X → Y defined by

Cf = Mf / im if .
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Equivalently, we can execute the two identifications in the other order and define Cf by the
pushout

where the left vertical arrow is the base inclusion. Again, the cone tip, given by the collapsed
space im if in the first definition, can serve as a base point so that Cf becomes an object of
Top•. One may think of the mapping cone Cf as a homotopy theoretically better behaved
version of the collapse space Y/ im f .

Example 1.40 (Attaching an n-Cell Along f ) An attaching map f : Sn−1 → Y defines
the pushout

We say Z is obtained from Y by attaching an n-cell along f . For example

Pushouts in Top have the following permanence property with respect to products.

Proposition 1.41
If K is a locally compact space and

is a pushout square in Top, then so is
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Proof By Lemma 1.35, the coproduct map g1 � g1 : X � Y −→ Z is an identification map.
Hence by Proposition A.2(ii), the map

g1 × idK � g2 × idK : X × K � Y × K −−−−−−−−→ Z × K

is an identification map, too. Therefore Lemma A.1 shows that the map

h = g1 × idK � g2 × idK : (X × K � Y × K)/∼ −−−−−−−−→ Z × K

is a homeomorphism where (x, k1) ∼ (y, k2) if and only if g1(x) = g2(y) and k1 = k2. This
in turn is equivalent to the existence of some a ∈ A with f1(a) = x, f2(a) = y and again
k1 = k2. Thus the homeomorphism h is precisely the unique arrow in the pushout diagram

showing that the outer square is a pushout itself. ��

Corroborating the intuition that pushouts in Top describe gluings of spaces, they
exhibit the following three convenient properties.

Theorem 1.42
Consider a pushout square in Top

(i) The map f descends to a homeomorphism X/i(A) ∼= Z/j (Y ).
(ii) If i is the inclusion of a closed subspace, then so is j . In that case f restricts to a

homeomorphism X \ i(A) ∼= Z \ j (Y ).
(iii) If i is the inclusion of a strong deformation retract, then so is j .
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Proof Part (i). By commutativity of the square, the map f descends to a map of sets
f̃ : X/i(A) → Z/j (Y ). The universal property of the quotient space X/i(A) implies that
f̃ is continuous. To construct the inverse of f̃ , consider the diagram

in which q is the quotient map and p is the constant map with value the base point i(A) ∈
X/i(A) (which also exists if A = ∅). Clearly, q and p form a cocone on i and f so we get
a unique map g : Z → X/i(A) such that the entire diagram commutes. Since p = g ◦ j , the
map g descends to a map of sets g : Z/j (Y ) → X/i(A), which is continuous by the universal
property of the quotient space Z/j (Y ). The identities g ◦ f̃ = idX/i(A) and f̃ ◦g = idZ/j (Y )

hold by construction.
Part (ii). First we observe that j is injective because two different points in Y only get

identified in Z if both lie in the image of f and if their preimages are mapped to the same
point in X via i. But this does not happen because i is injective. To see that j is the inclusion
of a closed subset, it remains to show that j is a closed map. So let C ⊆ Y be closed. Then
(f � j)−1(j (C)) = i(f −1(C)) � C is closed in X � Y because f is continuous and i is a
closed map. Since f � j is an identification map, it follows from Lemma A.1 that j (C) is
closed.

Knowing that both i and j are inclusions of closed subspaces, we can now treat them as
such and suppress the letters i and j in the notation. To prove the second statement of (ii),
we infer from (i) that X/A \ A/A ∼= Z/Y \ Y/Y . From this the assertion follows once we
verify that the bijections X \ A −→ X/A \ A/A and Z \ Y −→ Z/Y \ Y/Y , arising as
restrictions of p : X −→ X/A and q : Z −→ Z/Y , are open maps. To do so, note that an
open set U ⊆ X \ A is also open in X because A is closed. Since p is an identification map
and U = p−1(p(U)), it follows from Lemma A.1 that p(U) is open in X/A, hence also in
X/A \ A/A. The same argument applies to Z \ Y −→ Z/Y \ Y/Y .

Part (iii). Let r : X → A be a retraction and let H : X × I → X be a homotopy with
H0 = idX , H1 = i ◦ r , and Ht(i(a)) = i(a) for a ∈ A. The pushout
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gives a retraction r ′ : Z → Y of j . Using Proposition 1.41, the pushout

yields a homotopy H ′. Indeed, the bent arrows form a cocone because the deformation
retraction H is strong. We check that H ′ is a deformation retraction idZ �H ′ j ◦ r ′. Indeed,
each z ∈ Z either lies in im f or in im j (or in both) and

H ′
0(j (y)) = j (prY ((y, 0))) = j (y), H ′

0(f (x)) = f (H0(x)) = f (x),

H ′
1(j (y)) = j (prY ((y, 1))) = j (y) = j (r ′(j (y))),

H ′
1(f (x)) = f (H1(x)) = f (i(r(x))) = j (f (r(x))) = j (r ′(f (x))).

Finally, H ′ is strong: H ′(j (y), t) = H ′((j × id)(y, t)) = j (prY (y, t)) = j (y). ��

We remark that pushouts in HoTop do not always exist. Instead, one works
with a non-categorical substitute called “homotopy pushouts” (and more generally
“homotopy colimits”) as we discuss later in Sect. 2.3. In the category Group,
however, pushouts exist and are constructed as quotients of coproducts much like in
the category Top.

Lemma 1.43
Pushouts exist in Group and are given by

where N = N ({s(a)t (a)−1 : a ∈ A}) is the smallest normal subgroup of G ∗ H

containing s(a) · t (a)−1 for all a ∈ A.
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Proof We have to show existence and uniqueness of the dashed arrow in

The arrow G ∗H → Q from the universal property of the coproduct descends to (G ∗H)/N

by commutativity of the diagram. Uniqueness follows from the universal property of the
quotient group that is formally the same as the universal property of the quotient topology
used in Lemma 1.35. ��

In the special case that s and t are injective, the pushout group (G ∗ H)/N is
called the free product of G and H with amalgamation over A and is denoted by
G∗A H . If G = 〈S1|R1〉 and H = 〈S2|R2〉, then a presentation of the pushout group
(G ∗ H)/N is given by

〈S1 � S2 | R1 � R2 � {s(a)t (a)−1 : a ∈ A}〉.

To complete the picture, let us now consider the diagram

whose colimit is called the coequalizer q : Y → Q of f and g. The universal
property is captured by the diagram

In words, for every morphism h : Y → Z, there exists a unique arrow h : Q → Z

such that h = h ◦ q. In other words,

is a coequalizer diagram if and only if
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is a pushout diagram. From this we see that in Set, the coequalizer of f and g is
the quotient map q : Y → Q where Q = Y/∼ is the set of equivalence classes for
the finest equivalence relation on Q, which asserts that f (x) ∼ g(x) holds true for
all x ∈ X. In Top, the coequalizer has the same description as in Set where now Q

carries the quotient topology with respect to “∼”.

The pushout of X
s←− A

t−→ Y in a category C is the coequalizer of the arrows
iX ◦ s : A → X

∐
Y and iY ◦ t : A → X

∐
Y and the general description of colimits

should by now be apparent. If C has all binary coequalizers and all coproducts, then
the colimit of the diagram D : I → C is just the coequalizer of

where the cocomponent of s at the morphism f : i → j is the inclusion iD(i) while
the cocomponent of t is iD(j) ◦ D(f ). Hence a category has all colimits if and only
if it has all coproducts and binary coequalizers.

In the category Top, we thus see that not only a pushout but also a general colimit
of a diagram D : I → Top is given by a quotient space of the topological sum∐

i∈ob(I ) D(i). In particular, the proof of Proposition 1.41 carries over to general
colimits so that we have the following result.

Proposition 1.44
Let K be a locally compact space and consider the functor 	K : Top → Top, which
sends a map f : X → Y to f × idK : X × K → Y × K . Then 	K is cocontinuous:
for every diagram D : I → Top, we have

colimi∈I 	K(D(i)) = 	K(colimi∈I D(i)).

As an alternative proof, one can show that the mapping space functor (−)K ,
which takes a space X to the space of continuous maps XK = {f : K → X} with
the compact open topology, is right adjoint to 	K and apply Exercise 1.5 below.

Exercises

1.1 Let G be a group and denote by G-Set the category of left G-sets. Recall that
objects are functors from G to Set and morphisms are natural transformations. Find
the left adjoint to the forgetful functor G-Set → Set.

1.2 Let Fin-Bij be the category whose objects are finite sets and whose morphisms
are bijections. For a finite set X, let B(X) be the set of bijections X → X and let
O(X) be the set of total orders on X. Turn B and O into functors Fin-Bij → Set.
Show that there is no natural transformation B → O.
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1.3 Let R be a commutative ring and let M be an R-module. Show that (−)⊗R M

is left adjoint to HomR(M,−). Hint: Recall the universal property of the tensor
product in terms of bilinear maps.

1.4 Let pB : E → B be a covering space and let ϕ : B ′ → B be continuous. Show
that the morphism pB ′ : Eϕ → B ′ in the pullback square of pB along ϕ is again a
covering space. Hint: Recall the definition of pB : E → B being a covering space:
for each x ∈ B we have an open neighborhood U ⊆ B of x, a discrete space

D, and a homeomorphism g : p−1
B (U)

∼=−→ D × U , which fits into the commutative
triangle

Out of this data construct corresponding triangles for pB ′ : Eϕ → B ′.

1.5 Let C and D be categories and let G : D → C be a functor with left
adjoint F : C → D. Let D : I → D be a diagram and suppose it has the limit(
limD

pi→ D(i)
)

i∈ob I
. In this exercise we will show step by step that the diagram

G ◦ D has limit
(

G(limD)
G(pi)→ G(D(i))

)

i∈ob I

. (1.45)

(a) Show that 1.45 defines a cone on G ◦ D.

(b) Let

(

C
fi→ G(D(i))

)

i∈ob I

be any other cone. Show that naturality of the

adjunction implies that the adjunct morphisms form a cone on D.
(c) Conclude that there is a unique arrow F(C) → limD factorizing the cone F(C)

over the universal cone limD and show that its adjunct gives the desired unique
arrow factorizing the cone C over the cone G(limD).

Remark: We thus have shown that a right adjoint functor G is continuous: It
preserves all (small) universal cones and in particular we have

G(limD) = lim(G ◦ D).

Dually, a left adjoint functor F is cocontinuous: It preserves all (small) universal
cocones and in particular we have

F(colimD) = colim(F ◦ D).
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1.6 Let G : Top → Set be the forgetful functor. Show that the pullback in Top
corresponds to the pullback in Set under G by constructing a left adjoint to G.
Does G also have a right adjoint?

1.7 An object I in a category C is called initial if for every X ∈ ob(C) there exists
a unique morphism I → X. An object T is called terminal if for every X ∈ ob(C)

there exists a unique morphism X → T . An object 0 is called a zero object if it
is both initial and terminal. A category C is called pointed if it has a zero object.
For any two objects X, Y ∈ ob(C) in a pointed category C, there exists a unique
zero morphism 0XY : X → Y defined as the composition 0XY : X → 0 → Y . We
define kernel and cokernel of a morphism f : X → Y in C as the equalizer and
coequalizer of f and 0XY , respectively.

(a) Convince yourself that in Group, Ab, K-vect, R-mod, categorical kernels and
cokernels describe the usual notions. Find kernels and cokernels in Top•.

(b) Ponder why one should not expect kernels and cokernels to exist in HoTop•.
(c) Let F : C → D be a functor of pointed categories. Show that F preserves zero

objects and zero morphisms if F is left or right adjoint. Show that F preserves
kernels if it is right adjoint and preserves cokernels if it is left adjoint.

1.8 A subspace A ⊆ X is a retract of X if there exists a retraction r : X → A.
Show that retracts of Hausdorff spaces are closed. Construct a non-closed strong
deformation retract A ⊆ X of a T1-space X (meaning points in X are closed). Hint:
Consider a suitable quotient space of I × I .

1.9 We saw at the end of the chapter that coequalizers can be described by
pushouts. Find the dual description of equalizers in terms of pullbacks.



2Fundamental Groupoid and van Kampen’s
Theorem

In many geometrically relevant situations, a space can be decomposed into smaller
spaces. This might either mean that one has a suitable cover by subspaces or the
space arises as a gluing of subspaces right away. Our first goal is to find means
that in both cases allow to compute the fundamental group of the space in terms of
the fundamental groups of its constituents. We should keep in mind, however, that
the fundamental group π1(X, x0) of a topological space X with base point x0 ∈ X

depends and informs on the path component of x0 in X only. Consequently, any
decomposition theorem on the fundamental group that we endeavor to come up with
will have to include assumptions on path connectedness. The proof would moreover
involve some cumbersome juggling with base points. To avoid these nuisances,
we generalize the concept of fundamental group to the notion of fundamental
groupoid for which we obtain a clean statement and proof of a decomposition result:
the van Kampen theorem in the groupoid version due to R. Brown.

Now that our journey through algebraic topology is about to really begin, let us
once and for all adopt the convention that spaces are topological spaces and all
occurring maps of spaces are meant to be continuous maps unless otherwise stated.
The notation X ∼= Y shall indicate that the space X is homeomorphic to Y , whereas
the notation X � Y shall mean that X is homotopy equivalent to Y .

2.1 The Fundamental Groupoid

A groupoid is a small category in which all arrows are isomorphisms. The pivotal
example is the fundamental groupoid of a space.

Definition 2.1
Let X be a space. The fundamental groupoid is the small category �(X) whose objects
are the points in X and whose morphisms are homotopy classes of paths relative end
points. So for x, y ∈ X, we have
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Hom�(X)(x, y) = {γ : I → X : γ (0) = x, γ (1) = y}/�

where γ1 � γ2 if and only if there is H : I × I → X such that H0 = γ1 and H1 = γ2 as
well as Ht(0) = x and Ht(1) = y for all t ∈ I . Composition is given by concatenation of

paths: for x
[γ1]−−→ y

[γ2]−−→ z, we set [γ2] ◦ [γ1] = [γ1γ2] where

(γ1γ2)(t) =
{

γ1(2t) for 0 ≤ t ≤ 1
2 ,

γ2(2t − 1) for 1
2 ≤ t ≤ 1

}
.

Note that identity morphisms in �(X) are represented by constant paths and indeed, all
morphisms in �(X) are invertible: [γ ] has inverse [γ ], where γ is the reverse path of γ

given by γ (t) = γ (1−t). The endomorphism set of any object in a groupoid forms a group
under composition. In the case of the fundamental groupoid, we have Hom�(X)(x0, x0) =
π1(X, x0).

Definition 2.2
A category is called connected if every two objects A and D can be connected by a
sequence of arrows as in

A ←− B −→ C ←− D.

It is not required that there are any morphisms from A to D.

The reason for the terminology is now apparent: �(X) is connected if and only
if X is path connected. The two fundamental groups of a path connected space with
respect to two different base points are isomorphic, but not canonically so. One
obtains an isomorphism after picking a relative homotopy class of paths between
the base points. This phenomenon can now be formulated entirely categorically.
Recall from Example 1.8 that every group G gives rise to a small category G with
one object • and HomG(•, •) = G.

Lemma 2.3
Let G be a nonempty connected groupoid, and let x ∈ obG be any object. Then the
inclusion functor

Ix : AutG(x) = HomG(x, x) −→ G

is an equivalence of categories.

Proof Since G is small, the axiom of choice allows us to pick isomorphisms fy : x → y for
all y ∈ obG and for simplicity we choose fx = idx . We define a functor R : G → AutG(x)

on objects by R(y) = x and on morphisms by:

R(y
g−→ z) = x

fy−→ y
g−→ z

f −1
z−−→ x.
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We have R ◦ Ix = idAutG(x)
. It remains to show that Ix ◦R is naturally isomorphic to idG . We

claim that the arrows fy are actually the components of such a natural isomorphism. Indeed,
let g : y → z be any arrow in G. Then the diagram

in G is just given by:

hence it commutes and all arrows fy are isomorphisms. 	


Applying the lemma to the fundamental groupoid gives the following result.

Corollary 2.4
Let X be a nonempty path connected space, and let x0 ∈ X be any base point. Then
the inclusion functor

π1(X, x0) −→ �(X)

is an equivalence of categories.

In this sense, the fundamental groupoid is an enhancement of the fundamental
group designed for possibly disconnected spaces.

2.2 Van Kampen’s Theorem

We can now explain how the fundamental groupoid of a space can be expressed in
terms of the fundamental groupoids of a suitable open cover. Let Groupoid be the
category of groupoids, morphisms being functors. We have an inclusion functor

Group −→ Groupoid

which views a group G as the groupoid G. It is moreover clear that the fundamental
groupoid defines a functor � : Top → Groupoid.
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Theorem 2.5 (van Kampen—Groupoid Version)
Let X be a space, and let O be an open cover of X, which is closed under finite
intersections. Consider O as a small category with morphisms given by inclusions.
Then restricting � to O defines a diagram �|O : O → Groupoid such that �(X) =
colim�|O .

We can use the alternative notation �(X) = colimU∈O �(U) for the conclusion
of the theorem to stress that �(X) is built up from �(U) for U ∈ O. The
inclusion functor IO : O → Top satisfies X = colim IO, which we may write
as X = colimU∈O U . Thus the theorem says that � has the “cocontinuity” property

�(colimU∈O U) = colimU∈O �(U) .

For the proof of the theorem, we need the following point-set topological
consideration, which will also be convenient at a later point in the text.

Lemma 2.6 (Lebesgue)
Let X be a compact metric space with an open cover U . Then there exists δ > 0 such
that every subspace A ⊆ X of diameter less than δ is contained in some U ∈ U .

Such a constant δ is called a Lebesgue-δ of the cover U .

Proof We cover X = ⋃
x∈X Bε(x)(x) by open balls of varying radius ε(x) around x such

that for each x ∈ X the ball B2ε(x)(x) is contained in some Ui ∈ U . By compactness of X,
this cover has a finite subcover X = ⋃n

i=1 Bε(xi )(xi) and we set δ = min{ε(x1), . . . , ε(xn)}.
Now suppose there was a ball B ⊆ X of radius δ, which was not contained in any of the
balls B2ε(x1), . . . , B2ε(xn). Then the midpoint of B would lie outside

⋃n
i=1 Bε(xi )(xi) = X,

which is absurd. 	


Proof of Theorem 2.5 Clearly, the inclusions (�(U) → �(X))U∈O define a cocone on
�|O . To see it is universal, let (FU : �(U) → G)U∈O be any other cocone. We have to

show that there exists a unique functor �(X)
F→ G such that the diagram
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commutes for all U ∈ O. We define F on objects by F(x) = FU(x) for any U ∈ O with
x ∈ U . To see that this is well-defined, note that for any other V ∈ O with x ∈ V , we have
the diagram

thus FU(x) = FU∩V (x) = FV (x). To define F on morphisms, let [γ : x → y] ∈
Hom�(X)(x, y) be a relative homotopy class represented by a path γ : I → X from x

to y. We choose a Lebesgue-δ for the open cover {γ −1(U)}U∈O of the compact metric
space I = [0, 1]. Subdividing [0, 1] into n subintervals of length less than δ, we see that
γ = γ1 · · · γn is the concatenation of n paths γi each of which is contained entirely in some
Ui ∈ O. Set F([γ ]) = FUn

([γn]) ◦ · · · ◦ FU1([γ1]). To see that this construction is well-
defined, we have to check it is independent of:

(i) The chosen subdivision of γ into γ1, . . . , γn and the chosen sets U1, . . . , Un

(ii) The representative in the relative homotopy class [γ ]

(i). Any two subdivisions have a common refinement. It is therefore enough to show that
F([γ ]) is unaltered when refining the subdivision and possibly replacing the chosen sets Ui .
To see that, it is in turn enough to discuss the case that γ = γ1γ2 with the images of γ1,
γ2, and γ contained in U1, U2, and U0, respectively. Using the commutativity of the cocone
diagram (FU : �(U) → G)U∈O and the functoriality of FU0 , we compute

FU2([γ2]) ◦ FU1([γ1]) = FU2∩U0([γ2]) ◦ FU1∩U0([γ1]) = FU0([γ2]) ◦ FU0([γ1]) =
= FU0([γ1γ2]) = FU0([γ ]).

(ii). Let H : I × I → X be a homotopy relative end points from γ to γ ′. So H restricts to
γ on the bottom edge and to γ ′ on the top edge of the square I × I , while it restricts to the
constant map with value x on the left edge and to the constant map with value y on the right
edge. Pick a Lebesgue-δ of the open cover {H−1(U)}U∈O of I × I . We subdivide the square
I × I into little squares of diameter less than δ. Then one by one we can move the path γ

to γ ′ by homotopies relative end points through little squares as indicated in the following
picture.
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In doing so, when moving through left most little squares, we can move the initial point
vertically upwards during the homotopy and still obtain a homotopy relative end points.
Similarly, when moving through right most little squares, we can move the end point
vertically upwards during the homotopy. From one step to the next, two paths γ1 and γ2
differ only by a little square, so γi is a concatenation γi = γinitialγ

i
middleγend with i = 1, 2.

Using the same sets in O for the subdivisions of γ1 and γ2 induced by the little squares, it
follows that

F([γ1]) = · · · ◦ FU([γ 1
middle]) ◦ · · · = · · · ◦ FU([γ 2

middle]) ◦ · · · = F([γ2])

because γ 1
middle � γ 2

middle relative end points. We conclude F([γ ]) = F([γ ′]).
By construction, F is a functor that factorizes the cocone (�(U)

FU→ G)U∈O over the
cocone (�(U) → �(X))U∈O and it is unique with this property. 	


The groupoid version of van Kampen’s theorem has an elegant statement and
a slick proof. It is however not apparent how it can be employed for actual
computations of fundamental groups. Therefore, we will now make the transition
back from groupoids to groups and derive the group version of van Kampen’s
theorem from the groupoid version.

Theorem 2.7 (van Kampen—Group Version)
Let X be a nonempty space, and let O be a cover by open path connected subsets
that all contain a given point x0 ∈ X. Suppose in addition that O is closed under
finite intersections. Consider O as a small category with morphisms given by pointed
inclusions. Then the diagram π1|O : O → Group satisfies π1(X, x0) = colimπ1|O .

Similarly as before, the inclusion functor IO : O → Top• is a diagram with
(X, x0) = colim IO so that we can restate the assertion of the theorem as

π1(colimU∈O(U, x0)) = colimU∈O π1(U, x0).

Proof Since every point in X can be joined by a path to x0 within some U ∈ O, we see that
X is path connected. It follows from Corollary 2.4 that the inclusion functor I : π1(X, x0) →
�(X) is an equivalence of categories. The proof of Corollary 2.4 also reveals that we obtain
the inverse functor R : �(X) → π1(X, x0) by picking paths γy : x0 → y for each y ∈ X

and setting

R([γ : y → z]) = [x0
γy−→ y

γ−→ z
γ −1
z−−→ x0].

Let us first assume that the cover O is finite. Then we can pick the paths γy cleverly within⋂
U�y U and again we agree that γx0 is the constant path. This choice has the effect that we

also obtain inverse functors RU : �(U) → π1(U, x0) and these satisfy the commutativity
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Now let (fU : π1(U, x0) → G)U∈O be any cocone on the diagram π1|O . We obtain an
induced cocone (fU : π1(U, x0) → G)U∈O on the diagram of groupoids π1|O . The above
commutative squares express that the compositions

(
�(U)

RU−−→ π1(U, x0)
fU−−→ G

)
U∈O

(2.8)

form a cocone on the diagram �|O . By the groupoid version of van Kampen’s theorem, there
exists a unique functor F : �(X) → G such that the diagram

commutes for all U ∈ O. We extend this diagram on the left by inclusion functors.

Since we have RU ◦ IU = idπ1(U,x0), the morphism f := F ◦ I is simply a group
homomorphism f : π1(X, x0) → G that satisfies fU = f ◦ iU for the inclusion
iU : π1(U, x0) → π1(X, x0) as required. To see uniqueness, let g : π1(U, x0) → G be
another morphism satisfying fU = g ◦ iU for all U ∈ O. Then we have the diagram
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in Groupoid. This shows that the morphism g ◦ R factorizes the cocone (2.8) over the
cocone (�(U) → �(X))U∈U . The latter cocone is universal by the groupoid version of
van Kampen’s theorem, so we have g ◦ R = F by uniqueness. Precomposing both sides of
this equality with I , we get g = F ◦ I = f , hence g = f .

Let us now assume that O is a possibly infinite cover and again let the family
(fU : π1(U, x0) → G)U∈O be a cocone on π1|O . For every finite intersection stable
subcover S ⊆ O, let US = ⋃

U∈S U . The restricted cocone (fU : π1(U, x0) → G)U∈S
defines a unique factorization map FS : π1(US , x0) → G by what we have proven so
far. By compactness of I and I × I , any given loop γ and any homotopy H in X lies
in a suitable US as above. From this, it follows that setting F([γ ]) = FS ([γ ]) gives
the well-defined and unique required factorization map F : π1(X, x0) → G of the cocone
(fU : π1(U, x0) → G)U∈O . 	


Van Kampen’s theorem is most commonly applied in the following situation. We
pick a base point x0 ∈ X in a nonempty space, and we decompose X = U1 ∪ U2
with U1, U2 open and U1, U2, U1 ∩ U2 path connected such that x0 ∈ U1 ∩ U2. In
that case, the group version says that

is a pushout square in Group.

Example 2.9 For the n-dimensional sphere Sn with n ≥ 2, we choose a base point x0 ∈ Sn

on the equator and define U1 as the complement of the south pole and U2 as the complement
of the north pole. Then U1 and U2 are contractible so that the pushout square looks like

It follows that Sn is simply connected for n ≥ 2.

Example 2.10 Consider the figure eight S1 ∨ S1, and let U1, U2 consist of one loop each
together with a little open overlap into the other loop. Then the intersection U1 ∩ U2 looks
like the letter “X,” hence U1 ∩ U2 � •. So the pushout square
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reduces in fact to a coproduct diagram and π1(S
1 ∨ S1, •) ∼= Z ∗ Z ∼= F({a, b}) =: F2 is

the free group on two letters a and b from Example 1.15. The letters a and b correspond to
loops that wind around one of the circles once. Inductively, the fundamental group of the one
point union of n copies of the circle is isomorphic to Fn, the free group on n letters. More
generally, for any (possibly infinite) index set I , the full version of van Kampen’s theorem
shows that π1(

∨
i∈I S1, •) ∼= F(I ) is the free group on the alphabet I .

In the last example, the overlaps of the subsets U1 and U2 are somewhat irritating
and it would have felt more natural to decompose the space S1 ∨ S1 just into the
two circles. Similarly, in the preceding example, it would have been more efficient
to subdivide the sphere Sn into the closed upper hemisphere and the closed lower
hemisphere. The intersections would then be closed subspaces, namely the point •
for S1 ∨ S1 and the equatorial Sn−1 for Sn. However, we had to require that the
subspaces Ui have some overlap to make sure we work with an open cover of the
space so that the assumptions of van Kampen’s theorem are met. But in the end, it
does not matter how these thickenings actually look like. It only matters that one
can choose an open neighborhood that contains the closed subspace of interest as
deformation retract. Subspaces with this property will be of increasing interest as
one advances through algebraic topology, which is why we will dedicate the next
section to their study. Afterwards, we can give another version of van Kampen’s
theorem that is most suitable for applications.

2.3 Cofibrations and Homotopy Pushouts

A map i : A → X of spaces has the homotopy extension property (HEP) for a
space Y if for each homotopy H : A × I → Y and for each map f : X → Y

with f (i(a)) = H(a, 0) for all a ∈ A, there exists a homotopy H ′ : X × I → Y

such that H ′(i(a), t) = H(a, t) and H ′(x, 0) = f (x) for all a ∈ A, x ∈ X, and
t ∈ I . The homotopy H ′ is called an extension of H with initial condition f . A
map i : A → X is called a cofibration if it has the HEP for all spaces Y . Setting
iA0 (a) = (a, 0) and iX0 (x) = (x, 0), we can express the definition by the diagram

(2.11)
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in which we require only existence of H ′, not uniqueness. The definition of
cofibration is of course impractical to verify directly. Therefore it is good to know
that if i has the HEP for its own mapping cylinder Mi , then i has the HEP for all
spaces. To prove this, we first observe that the pushout diagram

uniquely defines the map s : Mi → X × I . If i is the inclusion of a subspace, then
s is a continuous bijection onto the image X × {0} ∪ A × I . But the topology of
Mi might be finer than the subspace topology within X × I . However, we see that s
is a homeomorphism onto the image, hence a subspace inclusion, if i and thus also
i × id is the inclusion of a closed subspace. By Proposition 2.12 (iii) below, s is also
a homeomorphism onto the image if i is a cofibration.

Proposition 2.12
Consider a map i : A → X. The following are equivalent:

(i) The map i is a cofibration.
(ii) The map i has the HEP for Mi .
(iii) The map s has a retraction r : X × I → Mi so that r ◦ s = idMi

.

Proof (i) ⇒ (ii). Trivial. (ii) ⇒ (iii). By the HEP of i for Mi , we obtain the (non-unique)
arrow r : X × I → Mi from the diagram
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The defining diagrams of s and r unify to the diagram

hence r ◦ s = idMi
follows from the uniqueness statement in the universal property of the

pushout defining Mi .
(iii) ⇒ (i). This is formally similar, swapping HEP and pushout diagrams. Given H : A ×

I → Y and f : X → Y with f ◦ i = H ◦ iA0 , we obtain the pushout

which unifies with the defining diagram of r to the diagram

hence g ◦ r provides an extension of H with initial condition f . 	
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It is immediate from the definition that the composition of two cofibrations is
a cofibration. Not quite immediate but very helpful for the right intuition is the
following lemma.

Lemma 2.13
If i : A → X is a cofibration, then it is the inclusion of a subspace. If in addition X is
Hausdorff, then i : A ⊆ X is closed.

Proof Let iX1 : X → X × I be the inclusion iX1 (x) = (x, 1). For the end map i1 of the

homotopy i : A × I → Mi in the mapping torus Mi of i, we have

i1(a) = i(a, 1) = r(s(i(a, 1))) = r ◦ (i × id)(a, 1) = r(i(a), 1) = r ◦ iX1 ◦ i(a) (2.14)

for all a ∈ A. We already saw in Example 1.38 that i1 is a homeomorphism onto the image,

so i
−1
1 ◦ r ◦ iX1 |im i is the continuous inverse of i : A → i(A). This proves the first part of the

lemma. More than that, we get that

is an equalizer. Indeed, applying s to the equation in (2.14) shows that the parallel arrows
agree on im i. Conversely, if x ∈ X satisfies iX1 (x) = s ◦ r ◦ iX1 (x), then (x, 1) ∈ im s. As

the second coordinate is one, we must have in fact (x, 1) ∈ im(s ◦ i) so x ∈ im i. Now the
second part of the lemma follows from Example 1.29. 	


Thus it comes with no loss of generality to always view cofibrations as pairs
(X,A) with the HEP for all spaces. This justifies the word “extension” in the
HEP. One can moreover show that equalizers of continuous maps of compactly
generated weakly Hausdorff spaces are closed [24, Proposition 2.15]. So if X is
compactly generated weakly Hausdorff, one can still conclude that the subspace
A in a cofibration (X,A) is closed. The upshot is that non-closed cofibrations can
safely be considered pathological. We will now give a constructive characterization
of closed cofibrations.

Theorem 2.15
Let (X,A) be a pair of spaces. The following are equivalent:

(i) The pair (X, A) is a closed cofibration.
(ii) There exists a retraction R : X × I −→ X × {0} ∪ A × I and A ⊆ X is closed.

(continued)
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(iii) There exists a map u : X → I and a homotopy h : X × I → X such that:
(1) u−1(0) = A.
(2) h(x, 0) = x for all x ∈ X.
(3) h(a, t) = a for all a ∈ A and t ∈ I .
(4) h(x, 1) ∈ A for all x ∈ X with u(x) < 1.

So the map u in (iii) describes the closed subset A = u−1(0) as a strong
deformation retract of the open neighborhood U = u−1([0, 1)). In view of
this characterization, a closed cofibration (X,A) is also called a neighborhood
deformation retract or for short an NDR pair or just an NDR.

Proof (i) ⇒ (ii). Setting Y = X × {0} ∪ A × I , f (x) = (x, 0), and H(a, t) = (a, t) in the
HEP (2.11), we obtain a retraction R : X × I −→ X × {0} ∪ A × I .

(ii) ⇒ (i). Let H : A × I → Y be a homotopy, and let f : X → Y be an initial condition.
As we observed above Proposition 2.12,

is a pushout square because A ⊆ X is closed. By the universal property, H and f define a
map F : X ×{0}∪A× I → Y and H ′ = F ◦R is an extension of H with initial condition f .

(ii) ⇒ (iii). Define h : X × I → X by h = prX ◦ R. Then (iii) and (iii) are clear. Define
u : X → I by u(x) = maxt∈I |t − prI (R(x, t))|. Then clearly A ⊆ u−1(0). If conversely
u(x) = 0, then prX(R(x, (0, 1])) ⊆ A. SinceA is closed, this shows that also prX(R(x, 0)) ∈
A by continuity, so we have verified (iii). To see (iii), suppose u(x) < 1. Then in particular
|1 − prI (R(x, 1))| < 1, which shows R(x, 1) = (a, t) for some a ∈ A and some t > 0.
Therefore h(x, 1) = prX(R(x, 1)) = prX(a, t) = a ∈ A, which gives (iii). It remains to
show that u is continuous. To this end, we consider the continuous functions d : X × I → I

given by d(x, t) = |t − prI (R(x, t))| and dt : X → I given by dt (x) = d(x, t). Then for
s ∈ I , both the sets

u−1([0, s]) =
⋂
t∈I

d−1
t ([0, s]) and u−1([s, 1]) = prX(d−1([s, 1]))

are closed in X, the latter by Proposition A.2 (i). The complements (s, 1] and [0, s) for s ∈ I

form a subbasis of the topology of I , so u is continuous.
(iii) ⇒ (ii). By continuity of u and (iii), the subset A ⊂ X is closed. We define a map

R : X × I −→ X × {0} ∪ A × I by:

R(x, t) = (h(x, t
u(x)

), 0) if u(x) > t and R(x, t) = (h(x, 1), t − u(x)) if u(x) ≤ t.
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Continuity of R only needs proof on the subset A × {0} ⊆ X × I . Let U ⊆ X be a
neighborhood of a ∈ A. As we have h(a, t) = a for all t ∈ I , continuity of h and compactness
of I imply that there exists a neighborhood V ⊆ X of a such that h(V × I ) ⊆ U . Hence
for t > 0, we have R(V × [0, t)) ⊆ U × [0, t], which shows R is continuous at (a, 0). By
construction, R is a retraction: it fixes all points in X × {0} ∪ A × I . 	


Remark 2.16
Assertions (i) and (ii) in the theorem remain equivalent if one drops the closedness
condition from both statements. The proof requires a tricky point-set topological
argument that was found by Strøm [25, Theorem 2].

Remark 2.17
If we have a retraction R : X×I −→ X×{0}∪A×I as occurring in the theorem, then
X ×{0}∪A× I is automatically a strong deformation retract of X × I . Indeed, setting
R(x, t) = (R1(x, t), R2(x, t)), a strong deformation retraction H : X × I × I −→
X × I is given by H(x, t, s) = (R1(x, t (1 − s)), st + (1 − s)R2(x, t)).

Most notably, for every map of spaces f : X → Y , the inclusion if : X → Mf

into the mapping cylinder constructed in Example 1.38 is a closed cofibration. This
can be inferred from the NDR characterization in the theorem because with the help
of Proposition 1.41, we obtain the required homotopy h from the pushout

with g((x, t), s) = f (x,min{(1+ s)t, 1}) and the required map u from the pushout
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where m(x, t) = min{2(1 − t), 1}. We can now repeat our remark from Exam-
ple 1.38 in the more informed manner that in the category Top, every arrow is the
composition of a cofibration and a homotopy equivalence. Even better, every arrow
is the composition of a closed cofibration and a strong deformation retraction.

Example 2.18 It is probably fair to say that the pair (Dn, Sn−1) is the single most important
example of a closed cofibration. To see the NDR property, just notice that the inclusion
Sn−1 → Dn can be identified with the mapping cylinder inclusion if for the unique map

f : Sn−1 → •. More generally, for every space X, the pair (CX,X) is an NDR because the
base inclusion X ⊂ CX is the mapping cylinder inclusion if for f : X → •.

A cofibration (X,A) is called trivial or acyclic if the inclusion i : A ⊆ X is a
homotopy equivalence. It turns out that then A is a strong deformation retract of X.
So a trivial closed cofibration can also be described as a DR pair, meaning an NDR
pair for which the function u can be chosen with u(x) < 1 for all x ∈ X.

Proposition 2.19
Let (X,A) be a trivial cofibration. Then A is a strong deformation retract of X.

Proof By assumption, the inclusion i : A → X has a homotopy inverse r : X → A so that
r ◦ i �H idA and i ◦ r �G idX . Using r as initial condition, the HEP of i for A gives an
extension H ′ : X × I → A of H : A × I → A. We set r ′ := H ′

1, hence r ′ ◦ i = idA and
i ◦ r ′ �i◦H ′

1−t
i ◦ r �G idX . So the concatenation G′ of i ◦ H ′

1−t
and G is a deformation

retraction i ◦ r ′ �G′ idX . It remains to turn G′ into a homotopy that fixes A pointwise
throughout. To this end, we define a homotopy of homotopies g : A × I × I → X by:

g(a, t, s) =

⎧⎪⎨
⎪⎩

G′(a, 1 − 2t) for t ∈ [0, 1
2 − s

2 ],
G′(a, 2t − 1) for t ∈ [ 12 + s

2 , 1],
G′(a, s) otherwise

⎫⎪⎬
⎪⎭ .

The homotopy g is well-defined and continuous because the two line segments {(t, s) ∈
I × I : s = ±(1 − 2t)} where the definitions overlap are closed subsets of the square I × I .
On the edge {(t, s) ∈ I × I : s = 0} of the square I × I , the map g is the restriction to A× I

of the homotopy G′′ : X × I → X given by:

G′′(x, t) =
{

G′(i(r ′(x)), 1 − 2t) for t ∈ [0, 1
2 ],

G′(x, 2t − 1) for t ∈ [ 12 , 1]

}
.
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which is well-defined and continuous because for t = 1
2 we have

G′(i(r ′(x)), 0) = i(r ′(i(r ′(x)))) = i(r ′(x)) = G′(x, 0).

On all points of the other three edges, g restricts to i. The pair (X × I, A× I ) is a cofibration
by the criterion in Proposition 2.12 (iii) because Proposition 1.41 gives a homeomorphism
Mi×idI

∼= Mi × I . Hence we can extend the homotopy g : (A × I ) × I → X to a homotopy
g′ : (X × I ) × I → X with initial condition g′(x, t, 0) = G′′(x, t). Following g′ along the
three edges from (0, 0) to (0, 1) to (1, 1) to (1, 0) gives a homotopy from i ◦ r ′ to idX fixing
A pointwise at all times. 	


Corollary 2.20
The map f : X → Y is a homotopy equivalence if and only if if : X → Mf is the
inclusion of a strong deformation retract.

Proof Consider the factorization f = rf ◦ if in HoTop. We see that f is a homotopy
equivalence if if is. Conversely, if f is a homotopy equivalence, then the cofibration if is
trivial, hence it is the inclusion of a strong deformation retract. 	


The converse of Proposition 2.19 is wrong by Exercise 2.2. Cofibrations behave
nicely with respect to pushouts. This is the content of the next two theorems.

Theorem 2.21
Consider a pushout square in Top

(i) If i is a cofibration, then j is a cofibration.
(ii) If i is an NDR, then j is an NDR.

Proof Let H : Y × I → W be a homotopy, and let g : Z → W be an initial condition so that
g ◦ j = H0. From the HEP of i, we obtain a homotopy H ′ : X × I → W extending H ◦ (f ×
idI ) with initial condition g ◦ f . Hence H and H ′ form a cocone on the diagram consisting
of f × idI and i × idI so that from Proposition 1.41, we get a homotopy H ′′ : Z × I → W

as the unique dashed arrow in the diagram
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By the upper triangle, H ′′ is an extension of H . Moreover, for z ∈ Z \ im j , there exists
x ∈ X with f (x) = z and by the lower triangle we have H ′′

0 (z) = H ′
0(x) = g(f (x)) = g(z).

So H ′′ extends H with initial condition g, which shows (i). Part (ii) is just the combination
of part (i), Theorem 2.15, and Theorem 1.42 (ii). 	


Theorem 2.22
Let i : A → X be a cofibration, let f : A → Y be a map, and let

A
if−−→ Mf

rf−−→ Y

be the decomposition of f into cofibration and homotopy equivalence. Consider the
two pushout squares

There exists a unique homotopy equivalence c : Z
�−→ Z completing the diagram

Proof The maps j ◦ rf and f form a cocone on the upper pushout so that the universal
property gives a unique map c : Z → Z such that the right and the front cube face commute. It
remains to see that c is a homotopy equivalence. To find the homotopy inverse, we would like
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to use the canonical inclusion j0 : Y → Mf from Example 1.38 (where X = A). The idea is
to apply the universal property of the lower pushout to the cocone formed by jf ◦ j0 and if .
The problem is that these maps do not form a cocone in Top: we do not have jf ◦ j0 ◦ f =
if ◦ i. Nonetheless, they do form a cocone in HoTop: we have jf ◦ j0 ◦ f �H ′ if ◦ i.
The homotopy H ′ is obtained from the deformation retraction j0 ◦ rf �H idMf

via H ′ =
jf ◦ H ◦ (if × idI ). So visually, H ′ slides A along the cylindrical part of Z from Y toward
X. By the HEP of i, the reverse homotopy H ′

1−t
extends to a homotopy H ′′ : X × I → Z

with H ′′
0 = if . Let e = H ′′

1 be the end map of the homotopy. We now have

e ◦ i = H ′′
1 ◦ i = H ′

0 = jf ◦ j0 ◦ f,

so e and jf ◦ j0 are a cocone in Top on the diagram consisting of i and f . We obtain
the map d : Z → Z from the universal property of the lower pushout. Finally, using again
Proposition 1.41, we find the homotopies c ◦ d � idZ and d ◦ c � id

Z
as the unique dashed

arrows in the pushout diagrams

	


Given two maps X
f2←− A

f1−→ Y in Top, the pushout of X
f2←− A

if1−→ Mf1 can
more symmetrically be described by the pushout

and is known as the double mapping cylinder of f1 and f2. For every square
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in Top, which is homotopy commutative, meaning g1 ◦f1 �H g2 ◦f2, the maps g1
and H(a, t) induce a map c1 : Mf1 → Z, while the maps g2 and H(a, 1− t) induce
a map c2 : Mf2 → Z. Finally c1 and c2 give a comparison map c : Mf1,f2 → Z.

Definition 2.23
A homotopy commutative square

in Top is called a homotopy pushout if there exists a homotopy g1 ◦ f1 �H g2 ◦ f2 such
that the comparison map c : Mf1,f2 → Z is a homotopy equivalence.

Categorical pushouts in Topmay or may not be homotopy pushouts: the pushout
of the diagram D2 ← S1 → D2 is a homotopy pushout, whereas the pushout
of • ← S1 → • is not. In fact, the notion of homotopy pushout is designed to
remedy the defect that categorical pushouts of homotopy equivalent spaces need not
be homotopy equivalent. Theorem 2.22 says that a pushout square

in Top is a homotopy pushout if either i or f (by symmetry) is a cofibration. The
unique homotopy equivalence c in the theorem is precisely the comparison map for
the constant homotopy from f ◦ i to j ◦ f .

Theorem 2.24
Consider a pushout square in Top

Suppose that i is a cofibration and that f is a homotopy equivalence. Then also f is a
homotopy equivalence.
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Proof Since i is a cofibration, we can revisit the commutative cube from Theorem 2.22. Since
f is a homotopy equivalence, the map if is the inclusion of a strong deformation retract by
Corollary 2.20. Hence if is the inclusion of a strong deformation retract by Theorem 1.42(iii)
whence f is a homotopy equivalence by commutativity of the front face of the cube. 	


Corollary 2.25
Let (X, A) be a cofibration and assume that A is contractible. Then the collapse map
q : X → X/A is a homotopy equivalence.

Proof Apply the theorem to the pushout (1.37). 	


Remark 2.26
We still owe the reader an explanation of the strange terminology “cofibration.” To
demystify the word, let us first observe that the HEP of i : A → X for a space Y can
also be expressed by the diagram

where Y I is the space of maps I → Y with the compact-open topology and ev0 is
the evaluation map in zero, ev0(g) = g(0) for g : I → Y . An element in Y I is a
continuous choice of elements y ∈ Y , one for each i ∈ I . So we may think of the
space Y I as a “continuous product” of copies of Y parameterized by the interval I .
The dual concept should thus be the “continuous coproduct” Y × I of copies of Y

parameterized by I because an element (y, t) ∈ Y × I is a choice of a single element
y ∈ Y in the t-th copy of Y . The dual of the HEP is thus encoded by the diagram

Reflecting on it, one realizes that it asserts a homotopy lifting property (HLP) of
the map p. The homotopy H ′ should be a lift of the homotopy H along the map p

with initial condition f . A map p : E → B with the HLP for all spaces Y is called a
fibration because the main examples of fibrations are fiber bundles. These are defined
by a local triviality condition much like covering spaces though fibers are not required
to be discrete. In fact, the statement from (1.23) that pullbacks of covering maps are
covering maps extends to the statement that pullbacks of fibrations are fibrations. As

(continued)
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such, it is dual to Theorem 2.21 (i) stating that pushouts of cofibrations are cofibrations.
In a similar vein, not only is every arrow in Top a composition of a cofibration and
a homotopy equivalence, it is also a composition of a homotopy equivalence and a
fibration. These facts form a key point in modern axiomatic approaches to homotopy
theory built on so-called model categories. Duality statements as in this remark are
loosely subsumed under the term Eckmann–Hilton duality.

2.4 Computing Fundamental Groups

As a reward for the hard work of the previous section, we obtain the following
version of van Kampen’s theorem, which is a powerful tool to carry out actual
computations of fundamental groups.

Theorem 2.27 (van Kampen—Pushout Version)
Let

be a pushout of nonempty path connected spaces such that f1 or f2 is a cofibration.
Pick a0 ∈ A and set x0 = f1(a0), y0 = f2(a0), z0 = g1(f1(ao)) = g2(f2(a0)). Then

is a pushout in Group.

Proof Let us set M̊fj
= Mfj

\ im ifj
for j = 1, 2. We have a commutative diagram
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whose lower part comes from Theorem 2.22 and the discussion below. All downward pointing
arrows are homotopy equivalences. The point (a0,

1
2 ) ∈ A × (0, 1) determines base points

in all other spaces. The top face is the pushout in Top of an open cover. Applying the π1-
functor turns it into a pushout in Group by the group version of van Kampen’s theorem
(Theorem 2.7). Hence also the bottom face becomes a pushout in Group after applying π1.

	


As the easiest application of the theorem, the collapse space of a cofibration
i : A → X of path connected nonempty spaces has fundamental group

π1(X/A,A/A) ∼= π1(X, x0)/N (imπ1(i)).

For a similar application, let us examine the effect on the fundamental group if
one attaches an n-cell to a nonempty space Y as we did in Example 1.40. So let
f : (Sn−1, •) → (Y, y0) be a pointed map and consider the pushout

By Example 2.18, the inclusion i is a closed cofibration so Theorem 2.27 and
Lemma 1.43 prove the following result.

Theorem 2.28

(i) If n ≥ 3, then π1(j) : π1(Y, y0)
∼=−→ π1(Z, z0) is an isomorphism of groups.

(ii) If n = 2, then π1(j) is surjective and kerπ1(j) is the normal subgroup of
π1(Y, y0) generated by the loop [f ] ∈ π1(Y, y0).

Example 2.29 The (closed connected) orientable surface of genus g is defined by the
pushout
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where the attaching map f is determined by the surface word
∏g

i=1[ai, bi ] as follows. We

subdivide the circle S1 into 4g equal segments and label them (say counterclockwise) by the

surface word. We pick orientations of the 2g circles in the wedge
∨2g

i=1 S1 and label them by
a1, b1, . . . , ag, bg . Now f is given by mapping segments according to their labels where the
exponent ±1 describes whether the map preserves or reverses orientation. The fundamental
group π1(�g, •) is called the surface group of genus g. By Theorem 2.28 and Example 2.10,
it has the presentation

π1(�g, •) =
〈
a1, b1, . . . , ag, bg

∣∣∣ ∏g
i=1[ai, bi ]

〉
.

In particular, we have �0 = S2 and �1 ∼= T
2, hence π1(T

2, •) ∼= Z
2 by Example 1.17. The

(closed connected) nonorientable surface of genus g is defined by the pushout

where f is determined by the surface word
∏g

i=1 a2
i
. So we obtain

π1(Ng, •) =
〈
a1, . . . , ag

∣∣∣ ∏g
i=1 a2

i

〉
.

In particular, N1 = RP
2 is the real projective plane, which has fundamental group

π1(RP
2, •) ∼= Z/2Z. The nonorientable surface N2 is also known as the Klein bottle to

be discussed in Exercise 2.4. The classification theorem of closed surfaces asserts that the
families �g with g ≥ 0 and Ng with g ≥ 1 exhaust all closed connected 2-dimensional
manifolds up to homeomorphism.

The method of attaching cells can conversely be used to realize any given
group G as the fundamental group of a path connected space. To see this, pick a
presentation G = 〈S|R〉 and consider the pushout

Again we have chosen orientations of the circles in
∨

s∈S S1 and the map f wraps
the copy of S1 corresponding to r ∈ R along

∨
s∈S S1 according to the word r . In

doing so, we always start and end at a fixed base point • ∈ S1, which is mapped
to the wedge point • ∈ ∨

s∈S S1. Let us denote the image of this point in XG by
x0 = j (•).
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Theorem 2.30
We have π1(XG, x0) ∼= G.

Proof The pushout defining XG factors into two pushouts

Clearly coproducts in Top of cofibrations are cofibrations. So i is a cofibration by Exam-
ple 2.18. Hence k is a cofibration by Theorem 2.21 (i). We apply Theorem 2.27 to the right
pushout and conclude with Example 2.10 and Lemma 1.43. 	


The space XG is called the presentation complex associated with the presen-
tation 〈S|R〉 of G. We will learn later in Chap. 6 that XG is an example of a
“2-dimensional CW complex.” The presentation complex XG is compact if and only
if the presentation 〈S|R〉 is finite.

2.5 Higher Homotopy Groups

The fundamental group of a pointed space

π1(X, x0) = {γ : (I, {0, 1}) → (X, x0)}/�

is defined in terms of pointed homotopy classes of one-dimensional loops and hence
encodes primarily low-dimensional data. It is therefore good at distinguishing low-
dimensional spaces, for example we have

π1(S
1, •) � π1(S

2, •).

At the same time, it can have trouble distinguishing high-dimensional spaces as
is already visible in the fact π1(S

n, •) = {1} for n ≥ 2. A possible cure is the
consideration of higher homotopy groups consisting of relative homotopy classes

πn(X, x0) = {f : (In, ∂In) → (X, x0)}/�

where ∂In = In \ (0, 1)n is the boundary of the n-dimensional cube. In the first
coordinate, the multiplication in this group is defined by the same formula as in
the case of the fundamental group and all other coordinates are left untouched: for
[f ], [g] ∈ πn(X, x0), we set [f ] · [g] = [fg] with
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fg (x1, . . . , xn) =
{

f (2x1, x2, . . . , xn) for 0 ≤ x1 ≤ 1
2

g(2x1 − 1, x2, . . . , xn) for 1
2 ≤ x1 ≤ 1

}
.

This has the effect that the same proof as for the fundamental group shows that we
obtain a well-defined group structure on the set πn(X, x0) for n ≥ 1 and that πn

is a functor on Top• that factorizes through HoTop•. For n = 0, we formally have
(I 0, ∂I 0) = (•,∅), so that π0(X, x0) = π0(X) is independent of the base point and
can be interpreted as the set of path components of X.

For an alternative picture of the group structure on πn(X, x0), we consider
the homeomorphism In/∂In ∼= Sn that maps the midpoint of In to the south
pole of Sn and stretches In straight upward over the sphere. So the planes
{xi = 1

2 } ⊂ In become mutually orthogonal and equatorially embedded spheres
Sn−1 ⊆ Sn and ∂In maps to the north pole. With this identification, a map
(In, ∂In) → (X, x0) is the same as a map (Sn, •) → (X, x0) and πn(X, x0) =
HomHoTop•((S

n, •), (X, x0)) as sets. In this visualization, the group multiplication
takes the form

[f ] · [g] = [Sn → Sn ∨ Sn f ∨g−−→ Sn]

where the first map Sn → Sn ∨ Sn arises from collapsing the equator in Sn

corresponding to {x1 = 1
2 } ⊂ In followed by a homeomorphism from the resulting

quotient space to Sn ∨ Sn, which is defined similarly as above by stretching each of
the two hemispheres with collapsed equator over all of Sn.

Higher homotopy groups behave quite differently than the fundamental group.
The most striking difference is that for n ≥ 2, the n-th homotopy group is abelian,
so that πn is in fact a functor πn : HoTop• −→ Ab. The following picture describes
a relative homotopy from fg to gf in case n = 2. The idea carries over to higher
dimensions but not to n = 1.

The shaded areas and all boundary lines map to the base point x0. The good news is
that higher homotopy groups do distinguish the spheres. We have

πk(S
n, •) ∼=

{
Z, k = n,

0, k < n

}

as we will see later in Theorem 5.41. Determining the groups πk(S
n, •) for k > n

is however a hard problem. In fact, the only simply connected spaces for which
all homotopy groups are known are the contractible ones—when all these groups
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are trivial. The problem is that higher homotopy groups are not well-behaved
with respect to homotopy pushouts. There is no immediate generalization of van
Kampen’s theorem and in fact, the abelian group π4(S

2 ∨ S2, •) is infinite though
π4(S

2, •) is not, and the abelian group π2(S
2∨S1, •) is even infinitely generated. So

it is desirable to have an invariant capable of distinguishing high-dimensional spaces
that at the same time would be practically computable. This is what “homology”
accomplishes. In all its variants and disguises, homology shall be the topic of the
remainder of the book.

Exercises

2.1 Show that a space X is contractible if and only if the base inclusion X ⊂ CX

embeds X as a strong deformation retract of the cone.

2.2 Let X = ∏
R

I be an uncountable product of copies of I , and let 0 ∈ X be the
point that maps to zero under all projections. Show that {0} ⊂ X is a closed strong
deformation retract but not the zero locus of any map u : X → I .

2.3 Let x ∈ S1, let i : S1 → S1 × S1 be the inclusion given by i(y) = (x, y), and

let X be the pushout of the diagram S1 × S1 i←− S1 i−→ S1 × S1.

(a) Find a presentation for π1(X, •) by applying van Kampen’s theorem.
(b) Instead of describing X as a pushout of two spaces along a common subspace

as above, one can alternatively describe X as the product of two spaces. Find
such a description and use it to compute π1(X, •) again. Convince yourself that
the two results define isomorphic groups.

2.4 We obtain the Klein bottle K from [0, 1] × [0, 1] by identifying one pair of
parallel edges preserving the orientation and the other pair of parallel edges revers-
ing the orientation. Apply van Kampen’s theorem to obtain a group presentation
G1 = 〈a, b | R1〉 of π1(K) by observing that K can be obtained from gluing a
2-cell to S1 ∨ S1. Explain that the Klein bottle can also be obtained from gluing
two Möbius strips along their boundaries. Now obtain a second group presentation
G2 = 〈c, d | R2〉 of π1(K) via van Kampen’s theorem applied to this description.

2.5 Of course the two group presentations resulting in Problem 2.4 define iso-
morphic groups. Give an explicit isomorphism and its inverse by writing down the
images of a and b as words in c and d and vice versa.

2.6 Let C ⊂ R
2 be the union of circles of radius 1

n
with center ( 1

n
, 0) for n ∈ N.

Show that (C, (0, 0)) is not a cofibration. Is C homeomorphic to
∨

n∈N S1?
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After discussing the challenges and chances of working with higher dimensional
generalizations of the fundamental group, we are now ready to give an overall idea
of homology as an alternative and more accessible topological tool. We begin with
the introduction of simplicial homology, a variant of homology that is only defined
for a special type of spaces but for which the original, combinatorial idea still shines
through. The basic properties of simplicial homology will make apparent that there
should be an axiomatic approach to homology theory that we present in the last
section.

3.1 The Idea of Homology

The basic building block of homology is the standard n-simplex defined by

�n =
{

(x0, . . . , xn) ∈ R
n+1 :

n∑
i=0

xi = 1, xi ≥ 0 for all i = 0, . . . , n

}

This means the 0-simplex consists of a single point, the 1-simplex is a closed edge,
the 2-simplex is a solid equilateral triangle, the 3-simplex is a solid tetrahedron,
and so on. If {v0, v1, . . . , vn} denotes the standard basis of Rn+1, then �n can
equivalently be described as the convex hull of this basis, denoted by

�n = [v0, v1, . . . , vn]

So the basis vectors form the vertices of the simplex: vi is called the i-th vertex.
Dropping the i-th vertex from the convex hull construction gives the i-th face

[v0, . . . , v̂i , . . . , vn] ⊂ [v0, . . . , vn]
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Fig. 3.1 Triangulation of a surface of genus two

Fig. 3.2 Two homologous 1-cycles in the torus

of �n that opposes vi , where the “hat” decoration means the corresponding vertex
is omitted. Of course, this procedure can be iterated, faces have faces again, until
finally 0-simplices have the empty space as the only face by agreement. Various
simplices can be glued along faces to form topological spaces known as simplicial
complexes or, more generally, �-complexes.

Let X be a space that comes with such a “triangulation” by simplices as in
Fig. 3.1.1 We consider n-chains of n-simplices in X. For the moment, we think of
them as a choice of finitely many n-simplices in X. This would later correspond to
working with coefficients in Z/2Z. Now it is not hard to make explicit the intuitive
notion of boundary of an n-chain. It is the (n − 1)-chain consisting of the faces of
the n-simplices in the n-chain, which are not the common face of an even number
(usually two) of adjacent simplices of the chain. The so obtained boundary might be
empty, in which case the n-chain is called an n-cycle. In particular, the boundary of
an (n + 1)-chain is always an n-cycle. We only have to observe that the boundary
of the boundary of any simplex is empty. The n-th homology Hn(X) of X consists
of n-cycles up to boundaries of (n + 1)-chains: We identify two n-cycles if they are
homologous: if their union forms the boundary of an (n+1)-chain. The construction
is illustrated in Fig. 3.2.1

1 The image has previously appeared in [16].
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3.2 Simplicial Homology

In this section we make the above program precise though we do it right away for
integer coefficients. Let ∂�n = ⋃n

i=0 [v0, . . . , v̂i , . . . , vn] be the boundary of �n

and let
◦

(�n) = �n\∂�n be the interior of �n.

Definition 3.1
A �-complex is a topological space X with a family of maps

{σn
α : �n → X}

for each n ≥ 0 such that

(i) Each map σn
α | ◦

�n
is injective.

(ii) Each point x ∈ X lies in im(σn
α | ◦

�n
) for exactly one σn

α .

(iii) Each restriction σn
α |[v0,...,v̂i ,...,vn] is equal to some σn−1

β where we identify

[v0, . . . , v̂i , . . . , vn] with �n−1 = [v0, . . . , vn−1] by the unique linear homeomor-
phism that preserves the order of the vertices.

(iv) A subspace A ⊆ X is open if and only if (σn
α )−1(A) ⊆ �n is open for all σn

α .

We refer to a map σn
α : �n → X as an n-simplex of the �-complex X. A �-

complex X comes with a filtration by skeleta X0 ⊆ · · · ⊆ Xk ⊆ · · · ⊆ X where
the k-skeleton Xk is the union of all images of simplices of dimension at most k. A
�-complex X is called k-dimensional if Xk = X and Xk−1 �= X and it is called
infinite dimensional if there is no such k. We say that X is of finite type if for each
k ≥ 0, it has only finitely many k-simplices. We say X is finite if it has only finitely
many simplices altogether.

A simplicial complex is a �-complex X in which each simplex is uniquely
determined by its vertices. It follows that simplicial complexes have a convenient
and entirely combinatorial description as an abstract simplicial complex. One
starts with a set of vertices and specifies for each finite subset if it spans a simplex
or not. In doing so one only has to make sure that for each simplex also all of
its faces are simplices. The combinatorial simplicity comes at a price. Even for very
simple spaces, one needs a large number of simplices: The 2-torus T2 as a simplicial
complex needs at least 14 triangles, 21 edges, and 7 vertices! To endow T

2 with a
�-complex structure, two triangles, three edges, and one vertex suffice.

Definition 3.2
Let X be a �-complex. The n-th simplicial chain module C�

n (X) is the free Z-module
with basis

{σn
α : �n → X}
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Accordingly, the n-th chain module consists of formal Z-linear combinations

∑
α

kασn
α ∈ C�

n (X)

with finitely many nonzero coefficients. We call them simplicial n-chains in X.

Definition 3.3
The boundary homomorphism (also known as differential)

∂n : C�
n (X) → C�

n−1(X)

for n ≥ 1 is defined on the basis by

∂n(σn
α ) =

n∑
i=0

(−1)iσn
α |[v0,...,v̂i ,...,vn].

The sign ensures that the boundary of a boundary of an n-chain is trivial as we verify
in the following lemma. For n < 0, we formally set C�

n (X) = 0 and hence ∂n = 0
for n ≤ 0.

Lemma 3.4
We have ∂n−1 ◦ ∂n = 0.

Proof Let σ = σn
α ∈ C�

n (X) be any basis element. Then

∂n−1(∂n(σ )) = ∂n−1

⎛
⎝ n∑

i=0

(−1)iσ |[v0,...,v̂i ,...,vn]

⎞
⎠ =

=
∑
j<i

(−1)i (−1)j σ |[v0,...,v̂j ,...,v̂i ,...,vn] +

+
∑
j>i

(−1)i (−1)j−1σ |[v0,...,v̂i ,...,v̂j ,...,vn] = 0

because the two sums have the same summands with opposite signs. 
�

The lemma shows that (C�∗ (X), ∂∗) is a chain complex in the algebraic sense:
A sequence of R-modules over a commutative ring R (in our case R = Z)
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indexed over n ∈ Z and connected by homomorphisms ∂n satisfying the condition
∂n ◦ ∂n+1 = 0. The latter property can be restated as im ∂n+1 ⊆ ker ∂n or in words:
“every n-boundary is an n-cycle”. Homology captures the defect as to whether the
converse is true.

Definition 3.5
The n-th homology of a chain complex (C∗, ∂∗) is the R-module

Hn(C∗) = ker ∂n/ im ∂n+1.

Definition 3.6
The n-th simplicial homology of a �-complex X is the Z-module

H�
n (X) = Hn(C�∗ (X)).

Thus two cycles z1, z2 ∈ Zn(X) := ker ∂n represent the same element in H�
n (X)

(“are homologous”) if they differ by a boundary z1 − z2 ∈ Bn(X) := im ∂n+1. Note
that a Z-module is the same as an abelian group. More precisely, the categories
of abelian groups and the category of Z-modules are isomorphic by the forgetful
functor Z-mod → Ab and the functor Ab → Z-mod, which sends an abelian group
(G,+) to the module that is G itself as abelian group and has scalar multiplication
defined by n · g = (g + · · · + g) for n ∈ Z, which for n < 0 means n · g =
−g · · · − g. Hence for our choice of coefficients in Z, we can interchangeably talk
about homology modules or homology groups.

Example 3.7 Let us consider the circle X = S1 with the �-complex structure given by
one 0-simplex v and one 1-simplex e glued to v at both ends. The simplicial chain complex
(C�∗ (X), ∂∗) looks like

· · · −→ 0 −→ 0 −→ Ze
∂1−→ Zv −→ 0

and we have ∂1(e) = v − v = 0. Therefore all differentials in the chain complex are trivial,
which has the effect that the homology groups agree with the chain groups

H�
k (S1) ∼=

{
Z k = 0, 1
0 otherwise

Example 3.8 Let X = RP
2 be the real projective plane with the �-complex structure

pictured schematically in Fig. 3.3. The lower left 0-simplex is the same as the upper right
one and we denote it by v. The upper left 0-simplex is the same as the lower right one and
we denote it by w. The left and right hand 1-simplices are identical and are denoted by a

whereas the upper and lower 1-simplices are likewise identical and are denoted by b. The
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Fig. 3.3 A �-complex structure of the real projective plane RP2. Same arrows describe the same
1-simplex. The curved arrows refer to the orientations of the two 2-simplices that determine the
signs of the faces under the boundary map

diagonal 1-simplex is called c. The upper left 2-simplex is called U while the lower right
2-simplex is called L. The arrows point from lower to higher vertex indices. Hence we have

∂2(U) = −a + b + c

∂2(L) = a − b + c

∂1(a) = w − v

∂1(b) = w − v

∂1(c) = v − v = 0

Thus identifying

C�
0 (X) = Zv ⊕ Zw ∼= Z

2

C�
1 (X) = Za ⊕ Zb ⊕ Zc ∼= Z

3

C�
2 (X) ∼= ZU ⊕ ZL ∼= Z

2

the simplicial chain complex C�∗ (X) can be described by matrix multiplication as

· · · −→ 0 −→ 0 −→ Z
2

⎛
⎜⎝−1 +1

+1 −1
+1 +1

⎞
⎟⎠

−−−−−−−→ Z
3

(
−1 −1 0
+1 +1 0

)
−−−−−−−−→ Z

2 −→ 0.

We see that the differential ∂2 is injective, hence Z2(X) = ker ∂2 = 0, which gives

H�
2 (RP2) = 0.

For the first differential we compute that ∂1

⎛
⎜⎝k

l

m

⎞
⎟⎠ = 0 is equivalent to k + l = 0 so that
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ker ∂1 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝ k

−k

m

⎞
⎟⎠ : k, m ∈ Z

⎫⎪⎬
⎪⎭ .

To identify the image of the second differential we compute ∂2

(
r

s

)
=

⎛
⎜⎝−r + s

r − s

r + s

⎞
⎟⎠ . Setting

p = −r +s, therefore r +s = p+2r gives im ∂2 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝ p

−p

p + 2q

⎞
⎟⎠ : p, q ∈ Z

⎫⎪⎬
⎪⎭ . Substituting

m = k + m′ above, we see that

H�
1 (RP2) ∼= Z/2Z.

Finally we have

im ∂1 =
{(

k

−k

)
: k ∈ Z

}

and thus

H�
0 (RP2) ∼= Z

generated by either
(1
0
) + B0(X) or

(0
1
) + B0(X). To sum up, we computed

H�
k (RP2) ∼=

⎧⎪⎨
⎪⎩
Z k = 0
Z/2Z k = 1
0 otherwise

For the sake of quick illustration, we set up an ad hoc computation of the
homology of the real projective plane. To compute the homology of a chain complex
of free finite rank R-modules over a principal ideal domain R algorithmically, one
adheres to the following algebraic lemma.

Lemma 3.9

Let C2
∂2−→ C1

∂1−→ C0 be a chain complex of free finite rank R-modules over a
principal ideal domain R. Then

H1(C∗) ∼= Rb ⊕ R/(a1) ⊕ · · · ⊕ R/(an)

where a1, . . . , an ∈ R are the invariant factors of ∂2 and where

b = rank ker ∂1 − n.
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Recall that the invariant factors of a homomorphism of free R-modules over a
principal ideal domain R are the up to associatedness uniquely defined nonzero
elements a1 | a2 | · · · | an ∈ R such that there exist bases of the domain and
codomain with respect to which the homomorphism has a transformation matrix A

in Smith normal form: Aii = ai and all other entries zero. There are well-known
algorithms that turn a matrix over R into Smith normal form. The reader can find
a worked out example computation for a (3 × 3)-matrix over R = Z in [7, II.7.8].
Of course rank ker ∂1 and n = rank im ∂2 can likewise directly be inferred from the
Smith normal forms of ∂1 and ∂2, respectively.

Proof Since R is a principal ideal domain and since C1 and C0 are free of finite rank, the
nullspace C0

1 = ker ∂1 is complemented. So we obtain a direct sum decomposition C1 ∼=
C0
1 ⊕ C1

1 with free summands. Replacing the codomain of ∂2 by C0
1 , we can find bases

of C2 and C0
1 , which put ∂2 in Smith normal form. Picking any basis of C1

1 , the Smith
normal form of the original ∂2 is then obtained by extending the matrix with zero rows.
Since H1(C∗) = C0

1/ im ∂2, the lemma is now clear. 
�

3.3 Relative Simplicial Homology with Coefficients

It is a common theme in topology, and actually in all of mathematics, to explicitly
disregard any information that is not of interest for the problem at hand. For
example, one might only want to capture topological properties or phenomena of
a �-complex X, which are not already produced by a given subcomplex A ⊆ X.
This leads to the notion of relative simplicial homology H�

n (X,A). Additionally,
the ring Z on which we based our construction of simplicial homology so far,
might not always be the best choice to work with. For instance, we saw that
H�

2 (RP2) ∼= 0, which one might find unfortunate in the sense that our current
definition of homology does not seem to recognize the projective plane as a two-
dimensional object. The objective of this section therefore is to define relative
simplicial homology H�

n (X,A;R) with coefficients in any commutative ring R
such that we recover the previous definition for A = ∅ and R = Z.

Definition 3.10
Let X be a �-complex. A sub-�-complex (or simply subcomplex) is a subspace A ⊆ X

given by a union of simplices in X.

Observe that subcomplexes are always closed because (σn
α )−1(A) is a union of

subsimplices of �n and �n has only finitely many subsimplices. We call (X,A) as
above a �-pair.

Definition 3.11
The relative simplicial chain module of a �-pair (X, A) is the factor module

C�
n (X,A) = C�

n (X)/C�
n (A)
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Note that chains in A are trivial in C�
n (X,A) and the differential on C�

n (X)

satisfies ∂n(C
�
n (A)) ⊆ C�

n−1(A). Thus it descends to a new differential

∂n : C�
n (X,A) −→ C�

n−1(X,A)

and we still have ∂n−1◦∂n = 0. This shows that the relative simplicial chain modules
form a chain complex (C�∗ (X,A), ∂∗). A cycle from Z�

n (X,A) := ker ∂n is now a
relative cycle, meaning a chain whose boundary lies in A. Two such relative cycles
are relatively homologous if their difference becomes a boundary in B�

n (X,A) :=
im ∂n+1 after adding a chain from A if need be.

Definition 3.12
The n-th relative simplicial homology of a �-pair (X, A) is the Z-module

H�
n (X, A) = Hn(C�∗ (X,A)).

Example 3.13 We consider the caseX = �n,A = ∂�n. ThenC�
n (�n, ∂�n) ∼= Zwhereas

C�
k

(�n, ∂�n) ∼= 0 for k �= n, hence

H�
k (�n, ∂�n) ∼=

{
Z if k = n,

0 if k �= n

More generally, let R be any commutative ring (with unit element 1 ∈ R) and let
C�

n (X;R) be the free R-module with basis {σn
α : �n → X}. Correspondingly, we

obtain C�∗ (X,A;R) = C�∗ (X;R)/C�∗ (A;R), called the relative simplicial chain
complex with coefficients in R. The differential ∂∗ is defined as in Definition 3.3,
noting that −1 ∈ R because 1 ∈ R. The homology of this chain complex is denoted
by H�

n (X,A;R) and is called relative simplicial homology with coefficients in
R. Setting C�

n (X;R) := C�
n (X,∅;R) and H�

n (X;R) := H�
n (X,∅;R), we recover

the previous absolute definitions from Sect. 3.2 in the case of R = Z.

Example 3.14 Recall from Example 3.8 that the differential

C�
2 (RP2;Z)

∂2−−→ C�
1 (RP2;Z)

has the form

Z
2

⎛
⎜⎝−1 +1

+1 −1
+1 +1

⎞
⎟⎠

−−−−−−−→ Z
3

If we replace the ring Z by R = Z/2Z, then the equality −1 = +1 has the effect that

C�
2 (RP2;Z/2Z)

∂2−→ C�
1 (RP2;Z/2Z) is of the form
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(Z/2Z)2

⎛
⎜⎝1 1
1 1
1 1

⎞
⎟⎠

−−−−→ (Z/2Z)3

which is a rank-1 linear map of Z/2Z-vector spaces. By the rank-nullity theorem, also the
kernel is one-dimensional whence

H�
2 (RP2;Z/2Z) ∼= Z/2Z.

Intuitively, relative homology H�
n (X,A;R) quantifies how much H�

n (X;R)

differs from H�
n (A;R). To make this statement algebraically precise, we introduce

some terminology that will turn out to be useful throughout the course.

Definition 3.15

A sequence A
f−−→ B

g−→ C of objects and morphisms in R-mod is called exact at B if
ker g = im f .

Observe that in this case g is injective if and only if f = 0, and f is surjective if
and only if g = 0. A long exact sequence (LES) in R-mod is a sequence

· · · −→ An+1 −→ An −→ An−1 −→ · · ·

of objects and morphisms that is everywhere exact.

Theorem 3.16 (LES)
Let (X,A) be a �-pair. We have a long exact sequence

where

⎧⎪⎨
⎪⎩

in

jn

dn

is induced by the map

⎧⎪⎨
⎪⎩

Z�
n (A; R) → Z�

n (X;R)

Z�
n (X; R) → Z�

n (X,A; R)

Z�
n (X, A; R)

∂n→ Z�
n−1(A; R)

with Z�
n (X, A; R) = ker(∂n : C�

n (X,A; R) −→ C�
n−1(X,A; R)) and so forth.

Proof In this condensed proof, we drop the coefficient ring from the notation.
Exactness at H�

n (A). Let z + B�
n (A) ∈ ker in. Then z ∈ B�

n (X), which means there
exists c ∈ C�

n+1(X) with ∂n+1c = z. But z ∈ Z�
n (A) ⊆ C�

n (A), so c ∈ Z�
n (X, A), hence

z+B�
n (A) ∈ im dn+1. Conversely, let z+B�

n (A) ∈ im dn+1. Then there exists c ∈ C�
n+1(X)

with ∂n+1c = z. Therefore z ∈ B�
n (X), hence z + B�

n (A) ∈ ker in.
Exactness at H�

n (X). Let z + B�
n (X) ∈ ker jn. Then z ∈ B�

n (X, A), which means
there exists c ∈ C�

n+1(X) with z − ∂n+1c ∈ C�
n (A) and in fact z − ∂n+1c ∈ Z�

n (A)
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because ∂n(z − ∂n+1c) = 0. We obtain in(z − ∂n+1c + B�
n (A)) = z + B�

n (X) and so
z + B�

n (X) ∈ im in. Conversely, let z + B�
n (X) ∈ im in. Then there exists b ∈ B�

n (X) and
z′ ∈ Z�

n (A) such that z′ = z + b. Therefore z − z′ = −b ∈ B�
n (X), hence z ∈ B�

n (X, A),
which shows z + B�

n (X) ∈ ker jn.
Exactness at H�

n (X, A). Let z + B�
n (X, A) ∈ ker dn. Then ∂nz ∈ B�

n−1(A). Hence there

is c ∈ C�
n (A) with ∂nc = ∂nz. So z−c ∈ Z�

n (X) and jn((z−c)+B�
n (X)) = z+B�

n (X, A)

whence z + B�
n (X, A) ∈ im jn. Conversely, let z + B�

n (X,A) ∈ im jn. Then there is z′ ∈
Z�

n (X) and c ∈ C�
n (A) with z′ = z + c. It follows that ∂n(z) = ∂n(z′ − c) = ∂n(−c) ∈

B�
n−1(A) so z + B�

n (X,A) ∈ ker dn. 
�

The long exact homology sequence captures precisely in how far H�
n (A;R),

H�
n (X;R), and H�

n (X,A;R) interrelate. We single out an important special case.

Corollary 3.17
The relative homology H�

n (X,A; R) vanishes for all n if and only if all inclusions

H�
n (A)

in→ H�
n (X) are isomorphisms.

Proof In an exact sequence, only the trivial R-module fits between two adjacent zero
morphisms. With the above observation, this gives the “if” part of the corollary. Conversely,
the zero morphisms are the only morphism from and to the trivial R-module. Using the
observation again, this gives the “only if” part. 
�

In view of the corollary, one could wonder if we have in general H�
n (A;R) ⊆

H�
n (X;R) and H�

n (X,A;R) ∼= H�
n (X;R)/H�

n (A;R). This is however not
always true. In fact, it is true if and only if in the long exact sequence

· · · dn+1−−→ H�
n (A;R)

in−−→ H�
n (X;R)

jn−−→ H�
n (X,A;R)

dn−−→ H�
n−1(A;R)

in−→ · · ·

the differentials dn+1 and dn are zero. In this case, the three terms of order n form
what is called a short exact sequence (SES)

0 −→ H�
n (A;R)

in−−→ H�
n (X;R)

jn−−→ H�
n (X,A;R) −→ 0,

meaning a five term exact sequence starting and ending in the trivial module. It is
then still not necessarily true that in and jn can be identified with the canonical
inclusion and projection of a direct sum decomposition

H�
n (X;R) ∼= H�

n (A;R) ⊕ H�
n (X,A;R).

In fact, this holds true if and only if the SES splits.
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Lemma 3.18 (Splitting Lemma)

Let 0 −→ A
i−→ B

j−→ C −→ 0 be a short exact sequence of R-modules. The
following are equivalent:

(i) There exists a homomorphism p : B −→ A such that p ◦ i = idA.
(ii) There exists a homomorphism s : C −→ B such that j ◦ s = idC .
(iii) There exists an isomorphism B ∼= A ⊕ C fitting into the diagram

where the lower arrows are the canonical inclusion and projection.

Proof Statement (iii) is formally the strongest. It clearly implies (i) and (ii). To see that (ii)
implies (iii), we note that i is injective while j vanishes on im i and restricts to an
isomorphism on im s. So it is enough to show that B is the internal direct sum of im i

and im s. To see that, we decompose b ∈ B as b = (b − s(j (b))) + s(j (b)) with
b−s(j (b)) ∈ ker j = im i. If b ∈ im i∩im s, then by surjectivity of j there exists b′ ∈ B with
b = s(j (b′)). Since im i = ker j , we have 0 = j (b) = j (s(j (b′))) = j (b′) so b = s(0) = 0.
Similarly, to see that (i) implies (iii), we show that B is the internal direct sum of im i and
kerp. For b ∈ B, we decompose b = i(p(b)) + (b − i(p(b))) with b − i(p(b)) ∈ kerp.
If b ∈ im i ∩ kerp, then there is a ∈ A such that b = i(a) and 0 = p(b) = p(i(a)) = a,
so b = i(0) = 0. Since im i = ker j , it follows that j restricts to an isomorphism on kerp
whence (iii) follows. 
�

The SES is called split if it satisfies one (then all) of the above conditions.
By the characterization in (ii), a SES always splits if C is a free R-module. The
splitting lemma can be stated and proven in a purely categorical manner for so
called abelian categories. In contrast, the splitting lemma fails in Group because
non-abelian groups can decompose as semidirect products. For example, the sign
of permutations gives a SES

1 −→ A3 −→ S3
sgn−→ {±1} −→ 1

for the symmetric group on three letters S3. This SES satisfies (ii) but not (i) because
{±1} does not lift to a normal subgroup of S3.

Even in those cases when the LES for relative homology does not decompose into
split SESes, it is still a valuable tool to reduce the computation of homology groups
to previously obtained results. The second powerful method to compute relative
homology uses that homology remains unaffected if one excises a subcomplex.
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Theorem 3.19 (Excision)
Let X be a �-complex and let A ⊆ Y ⊆ X be subcomplexes, such that A ⊆ Y̊ . Then
the inclusion of �-pairs

(X\Å, Y\Å)
j−→ (X, Y )

induces isomorphisms

H�
n (X\Å, Y\Å;R)

∼=−−→ H�
n (X, Y ; R)

for all n, where the “◦”-decoration indicates the interior as subspace of X.

Proof We show the stronger statement that the inclusion induces an isomorphism

C�∗ (X\Å, Y\Å; R)
j∗−−→ C�∗ (X, Y ; R)

of chain complexes. To see that j∗ is surjective, we can write c + C�
n (Y ; R) ∈ C�

n (X, Y ; R)

as c′+C�
n (Y,R)where c′ has no nonzero coefficients for simplices in Y . SinceX\Y ⊆ X\Å,

the element c′+C�
n (Y\Å; R) is a preimage of c+C�

n (Y ; R) inC�
n (X\Å, Y\Å; R) under j∗.

To see injectivity, let j∗(c+C�
n (Y\Å; R)) = 0. Then c ∈ C�

n ((X\Å)∩Y ; R). Since A ⊆ Y̊ ,
we have (X\Å) ∩ Y ⊆ Y\Å thus c ∈ C�

n (Y\Å; R), which shows that c + C�
n (Y\Å; R)

is trivial in C�
n (X\Å, Y\Å;R). Since j∗ is induced by the inclusion j of �-pairs, it

is clear that j∗ commutes with the boundary homomorphisms in C�∗ (X\Å, Y\Å; R) and
C�∗ (X, Y ; R). 
�

3.4 The Eilenberg–Steenrod Axioms for Homology

The most obvious disadvantage of simplicial homology is that unlike homotopy
groups, it is only defined for �-complexes, not for general topological spaces. One
might not feel too discouraged about this as examples of �-complexes abound. In
particular, all smooth manifolds admit a �-structure as one can see with quite some
effort. However, �-complexes are difficult to handle as category. Even defining
morphisms in such a way that H�

n (−,−;R) becomes a functor �-pairs → R-mod
is troublesome though it is much easier for simplicial complexes as we shall
see in the next section. It would then moreover not be clear whether homotopic
morphisms f � g satisfy H�

n (f ;R) = H�
n (g;R). This however is a desirable

feature as it would allow the conclusion that homotopy equivalent �-complexes
have isomorphic homology. So ideally, we want homology to be a family of functors

Hn : Top(2) −→ R-mod
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indexed over integers n ∈ Z such that we have

(1) A factorization

(2) A LES for every pair (X,A).
(3) An excision isomorphism for triples (X, Y,A) with A ⊆ Y̊ .

Here it is apparent how to define the category HoTop(2). The Eilenberg–Steenrod
axioms for homology make the above wish list precise.

Definition 3.20
A homology theory with values in R-mod consists of a family (Hn)n∈Z of functors

Hn : Top(2) −→ R-mod

and a family of natural transformations

∂n : Hn −→ Hn−1 ◦ J,

where J : Top(2) → Top(2) is the functor that sends a pair (X, A) to (A, ∅) and restricts a
map of pairs f : (X, A) → (Y, B) to f |A : (A,∅) → (B, ∅). The functors and the natural
transformations are required to satisfy the following set of axioms:

(1) Homotopy invariance: If two maps of pairs f, g : (X,A) → (Y, B) are homotopic by a
homotopy h with ht (A) ⊆ B for all t ∈ I , then Hn(f ) = Hn(g).

(2) Long exact sequence: Let the pair (X, A) determine the inclusions i : (A,∅) → (X,∅)

and j : (X, ∅) → (X, A). Then the sequence

· · · → Hn(A,∅)
Hn(i)−−−→ Hn(X,∅)

Hn(j)−−−−→ Hn(X,A)
∂n(X,A)−−−−−→ Hn−1(A,∅) → · · ·

is exact.
(3) Excision: Let A, Y ⊆ X be subspaces with Ā ⊆ Y̊ . Then the inclusion

(X\A, Y\A)
j−→ (X, Y )

induces isomorphisms

Hn(X\A, Y\A)
Hn(j)−−−−→ Hn(X, Y )

for each n ∈ Z.
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We say that a homology theory satisfies the dimension axiom if in addition

(4) Hn(•, ∅) = 0 for n �= 0.

We will write Hn(X) for Hn(X,∅). The R-modules Hn(•) are called the
coefficient modules of the homology theory. A homology theory is called ordinary
if it satisfies the dimension axiom and generalized otherwise. Naturality of ∂n says
explicitly that for every map of pairs f : (X,A) → (Y, B), the diagram

commutes. It follows that H∗(f ) maps the LES of (X,A) to the LES of (Y, B) so
that we obtain a commutative horizontal ladder with exact rows

The leftmost square commutes because the underlying square in Top commutes

and similarly for the middle square.
The goal suggests itself to construct an ordinary homology theory with values in

R-mod and we will do so in the next chapter. In the chapter after that, we verify
that this homology theory is isomorphic to simplicial homology for �-complexes
and naturally so for simplicial complexes.

3.5 Simplicial Approximation

To make the last naturality statement meaningful, we need to discuss in what sense
also simplicial homology is functorial. First we describe the morphisms in the
category of simplicial complexes.
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Definition 3.21
A map f : X → Y of simplicial complexes X and Y is called simplicial if it restricts to a
map of the 0-skeleta f 0 : X0 → Y 0 such that

(i) Whenever v0, . . . , vn ∈ X0 span a simplex in X, so do f (v0), . . . , f (vn) in Y .
(ii) The restriction of f to a simplex [v0, . . . , vn] is the unique affine linear extension of f 0

so that f (
∑n

i=0 tivi ) = ∑n
i=0 tif (vi).

The two conditions ensure that a simplicial map f is determined by its restriction
f 0 to the vertices so that not only simplicial complexes but also simplicial maps
have an entirely combinatorial description. A simplicial map f : X → Y induces a
homomorphism C�

n (f ) : C�
n (X) → C�

n (Y ) as follows. Given an n-simplex σn
α =

[v0, . . . , vn] in X, we set C�
n (f )(σn

α ) = 0 whenever the vertices f (v0), . . . , f (vn)

span a simplex of dimension less than n. Otherwise, let σn
β = [w0, . . . , wn] be the

n-simplex in Y spanned by f (v0), . . . , f (vn). We set C�
n (f )(σn

α ) = +σn
β if the

(n + 1)-tuples (w0, . . . , wn) and (f (v0), . . . , f (vn)) differ by an even permutation
and C�

n (f )(σn
α ) = −σn

β if they differ by an odd permutation. Note that here we
use that our definition of simplicial complex gives a little more than just an abstract
simplicial complex. The maps σn

α : �n → X induce an ordering of the vertices and
hence an orientation of the simplex defined as an ordering of the vertices up to even
permutations. We check that the family of homomorphisms C�∗ (f ) : C�∗ (X;R) →
C�∗ (Y ;R) is a chain map of chain complexes, meaning the diagram

commutes for every n. The only critical case to consider occurs when f maps an n-
simplex σn

α = [v0, . . . , vn] to an (n − 1)-simplex in Y . Then f maps precisely two
of the vertices v0, . . . , vn to the same vertex in Y and so C�

n−1(f )(∂σn
α ) consists

of precisely two summands that differ by sign, either because of the definition of
∂ or because of the definition of C�

n−1(f ) depending on whether the indices of
the two vertices are an odd or an even number apart. So both compositions in
the diagram are zero on σn

α as required. For a simplicial map of simplicial pairs
f : (X,A) → (Y, B) with subcomplexes A and B such that f (A) ⊆ B, the map
C�

n (f ) descends to a chain map C�
n (X,A;R) → C�

n (Y, B;R) of relative chain
complexes. By definition, a chain map sends cycles to cycles and boundaries to
boundaries. Hence a simplicial map f : (X,A) → (Y, B) induces a homomorphism
H�

n (f ) : H�
n (X,A;R) → H�

n (Y, B;R) in simplicial homology. The functor
relations H�

n (g◦f ) = H�
n (g)◦H�

n (f ) and H�
n (id(X,A)) = idH�

n (X,A;R) are readily
verified.

The condition for a map f : X → Y to be simplicial is topologically quite
restrictive. It is therefore reassuring to know that any continuous map f : X → Y
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Fig. 3.4 Barycentric subdivision of a 1- and a 2-simplex

from a finite simplicial complex to any simplicial complex is homotopic to a
simplicial map on some repeated barycentric subdivision of X. To explain this,
let vb = 1

n+1

∑n
i=0 vi be the barycenter (center of mass) of the standard n-simplex

�n = [v0, . . . , vn]. The barycentric subdivision of �n consists of the simplices
[vb,w1, . . . , wn] where [w1, . . . , wn] runs through the (n − 1)-simplices in the
barycentric subdivision of the n+1 faces [v0, . . . , v̂i , . . . , vn] of �n. This inductive
definition ends with the agreement that the barycentric subdivision of [v0] shall be
just [v0] itself. A visualization for n = 1 and n = 2 is given in Fig. 3.4.

The barycentric subdivision X[1] of a �-complex X has the same underlying
topological space as X, but each n-simplex σn

α : �n → X is replaced by the (n+1)!
restrictions to the simplices of the barycentric subdivision of �n. Here again, we
identify the simplex [vb,w1, . . . , wn] in the subdivision with the standard simplex
[v0, . . . , vn] by the unique linear homeomorphism that preserves the order of the
vertices. Inductively, we set X[r] = (X[r−1])[1] and X[0] = X.

Theorem 3.22 (Simplicial Approximation)
Let X and Y be simplicial complexes and assume that X is finite. Then for every
continuous map f : X → Y , there exists r ≥ 0 and a simplicial map g : X[r] → Y

such that f � g.

It is clear that the iterated barycentric subdivision in the theorem is necessary.
For there are only finitely many simplicial maps from the triangle to itself, but there
are infinitely many homotopy classes of maps S1 → S1 since π1(S1, •) ∼= Z. The
proof of the simplicial approximation theorem needs some preparation. To begin,
let us endow the finite simplicial complex X with any metric d in which each n-
simplex of X is isometric to some embedded n-simplex in R

n+1. A possible such
choice comes from realizing X as subcomplex of �|X0| ⊂ R

|X0|+1.

Lemma 3.23
Let σ be an n-simplex in X and let τ be an n-simplex from the subdivision of σ in X[1].
Then diam(τ ) ≤ n

n+1 · diam(σ ).
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Proof It is apparent that the diameter of a simplex is the maximal distance of any two of its
vertices. If neither of two vertices of τ is the barycenter of σ , then these two points lie in
one of the faces of σ , so we are done by induction. The distance from the barycenter b of σ

to any of the vertices v occurring in τ is maximal if v is a vertex of σ = [v0, . . . , vn], so
say v = vi . The line through vi and b intersects the i-th face [v0, . . . , v̂i , . . . , vn] of σ in its
barycenter bi = 1

n (v0 + · · · + v̂i + · · · + vn) and hence b = n
n+1bi + 1

n+1vi . So the line
segment from vi to b forms the n

n+1 -th part of the line segment from vi to bi . This shows
‖b − vi‖ = n

n+1‖bi − vi‖ ≤ n
n+1 diam(σ ). 
�

For a point x ∈ X, we define the carrier carr(x) as the unique simplex in X of
which x is an interior point. We say that a simplicial map g : X → Y is a simplicial
approximation to the continuous map f : X → Y if g(x) ∈ carr(f (x)) for all x ∈
X. The condition makes it possible to define a homotopy by the formula H(x, t) =
tg(x) + (1− t)f (x), which shows f � g. We define the open star st(v) of a vertex
v ∈ X0 as the subset of X consisting of all x ∈ X whose carrier contains v. To
see that st(v) ⊆ X is indeed open, it is enough to observe that the complement is a
union of simplices, hence closed by Definition 3.1 (iv). So we show that x /∈ st(v)

implies that carr(x) is disjoint from st(v). Indeed, the carrier of a given point is
the smallest simplex containing it, so for y ∈ carr(x), we have carr(y) ⊆ carr(x).
Since v /∈ carr(x), this implies v /∈ carr(y) whence y /∈ st(v) which is what we
wanted to show. Finally, we observe that an intersection of open stars

⋂n
i=0 st(vi) is

nonempty if and only if [v0, . . . , vn] is a simplex in X. For the carrier of a point x ∈⋂n
i=0 st(vi) contains each vertex v0, . . . , vn, hence [v0, . . . , vn] is a subsimplex of

carr(x). Conversely, each interior point of [v0, . . . , vn] is contained in
⋂n

i=0 st(vi).

Proof of Theorem 3.22 By the above, we are left with the task of constructing a simplicial
approximation g of f on some repeated barycentric subdivision X[r]. Since a finite
simplicial complex is apparently compact, we can pick a Lebesgue-δ for the open cover
{f −1(st(wi)) : wi ∈ Y 0} of X. By Lemma 3.23, there is r ≥ 0 such that all simplices in
X[r] have diameter less than δ

2 . For every fixed vertex v ∈ (X[r])0 and every x ∈ st(v), we

have v ∈ carr(x), hence d(x, v) < δ
2 . By the triangle inequality, this gives diam(st(v)) < δ.

This shows that there is wi ∈ Y 0 such that f (st(v)) ⊆ st(wi). So we set g(v) = wi and
verify that this choice defines a simplicial map. Let [v0, . . . , vn] be a simplex in X[r]. Then⋂n

i=0 st(vi) is nonempty. Since

f (
⋂n

i=0 st(vi)) ⊆ ⋂n
i=0 f (st(vi)) ⊆ ⋂n

i=0 st(g(vi)),

it follows that
⋂n

i=0 st(g(vi)) is nonempty, too, hence [g(v0), . . . , g(vn)] is a simplex in Y , as
required. Write a given element x ∈ X[r] with carrier carr(x) = [v0, . . . , vn] in barycentric
coordinates x = ∑n

i=0 tivi with t0 + · · · + tn = 1. For each i = 0, . . . , n, we have vi ∈
carr(x) so x ∈ st(vi), thus f (x) ∈ st(g(vi)), which means g(vi) ∈ carr(f (x)). This shows
g(x) = ∑n

i=0 tig(vi) ∈ carr(f (x)) as well. So g : X[r] → Y is a simplicial approximation
of f . 
�
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Exercises

3.1 Show that the minimal simplicial structure on the n-sphere Sn has
(
n+2
k+1

)
k-

simplices for k = 0, . . . , n.

3.2 Find�-complex structures for the torusT2 and the Klein bottleK and compute
the simplicial homology.

3.3 Let G be a group with presentation G = 〈S|R〉 and let XG be the associated
presentation complex. Endow XG with the structure of a �-complex and show that
H�

1 (XG) is isomorphic to the abelianization of G.

3.4 Prove or disprove the following assertions.

(a) If the sequence of Z-modules 0 → M −→ N −→ Z → 0 is exact, then
N ∼= M ⊕ Z.

(b) If the sequence of Z-modules 0 → M −→ N −→ Z/2 → 0 is exact, then
N ∼= M ⊕ Z/2.

(c) If the sequence of Z/2-modules 0 → M −→ N −→ Z/2 → 0 is exact, then
N ∼= M ⊕ Z/2.

3.5 Let R be a principal ideal domain (e.g.,R = Z) and let C be an R-module.

Show that if every SES 0 −→ A
i−→ B

j−→ C −→ 0 splits, then C is free.

3.6 Let R be a commutative ring and let M be an R-module.

(a) Show that the functor (−) ⊗R M is right exact: It preserves exactness of A →
B → C → 0.

(b) Show that the functor HomR(M,−) is left exact: It preserves exactness of 0 →
A → B → C.

Hint: Review Exercises 1.3 and 1.7(c).

3.7 Consider the �-complex K given by

.

(a) Explain that K is the Klein bottle and that the subcomplex given by the 2-
simplex M and its subsimplices is an embedded Möbius strip.
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(b) Compute the absolute and relative simplicial homology H�∗ (M;R), H�∗ (K;R)

and H�∗ (K,M;R) for R = Z and R = Z/2Z.
(c) Your results make the objects in the long exact sequence of the �-pair (K,M)

explicit. Find all the homomorphisms for both coefficient rings.

3.8 Let (H∗, ∂∗) be a homology theory with values in R-mod. Let (X,A) be a pair
of spaces and suppose that X retracts onto A. Show that the component at (X,A) of
the natural transformation ∂n is trivial for all n.

3.9 Let X be a �-complex. Show that X[2] is a simplicial complex.
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In this chapter, we construct singular homology, an ordinary homology theory with
values in R-mod in the sense of Eilenberg–Steenrod. To do so, we would like to
adhere to our previous idea of constructing homology by considering chains of
simplices and define homology as cycles up to boundaries. To make this program
work for a general topological space X, it seems that the only chance to come up
with a functorial construction—involving no choices—is to audaciously consider all
possible “simplices” at once. In other words, the n-th chain module Cn(X) should
be the free R-module with basis the set of all continuous maps �n → X. Of course,
continuous maps can be alarmingly irregular, just think of space filling curves.
Moreover, we do not require that �n → X would be injective, so the image can
be pinched and distorted in various ways. This explains the word singular: every
continuous map �n → X defines a simplex, as singular as it may be. For a typical
space X, like a manifold, the chain module Cn(X) will be uncountably generated
and the same goes for its submodule of cycles Zn(X). However, also the submodule
of boundaries Bn(X) will be humongous. So one may still hope that the quotient
Hn(X) = Zn(X)/Bn(X) has something useful to say.

4.1 The Definition of Singular Homology

As we just alluded, the construction of singular homology, like simplicial homology,
is a two step procedure of defining functors

Top(2) C∗(−;R)−−−−−→ R-chain
H∗−−→ R-mod

Here a morphism f∗ : (C∗, c∗) → (D∗, d∗) in the category R-chain of chain
complexes of R-modules is a chain map, a family of homomorphisms fn : Cn →
Dn such that dn ◦ fn = fn−1 ◦ cn for all n ∈ Z. So a chain map gives rise to a
commutative ladder
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To construct the second functor, we observe again that fn maps cycles in Cn to
cycles in Dn and boundaries in Cn to boundaries in Dn, so a chain map f∗ induces
morphisms

Hn(f∗) : Hn(C∗) → Hn(D∗)

and we clearly have Hn(f∗ ◦ g∗) = Hn(f∗) ◦ Hn(g∗) and Hn(idC∗) = idHn(C∗). To
construct the first functor, let X be any topological space.

Definition 4.1
The n-th singular chain module Cn(X;R) is the free R-module with basis {σn : �n →
X, σn continuous}.

Sometimes we will add a superscript and write C
sing
n (X;R) to stress we are

dealing with the singular chain module if otherwise confusion is likely. Let us
moreover agree that Cn(X;R) = 0 for n < 0. The same formula as for simplicial
homology defines the singular boundary homomorphism or singular differential

∂n : Cn(X;R) −→ Cn−1(X;R), ∂n(σ
n) =

n∑

i=0

(−1)iσ n|[v0,...,v̂i ,...,vn].

It is again understood that we identify [v0, . . . , v̂i , . . . , vn] with �n−1 by the unique
linear homeomorphism that preserves the order of the vertices. The same calculation
as before gives ∂n−1 ◦ ∂n = 0. The transition from the absolute to the relative case
is now similar to what we did for simplicial homology so that we walk through the
process at a swift pace.

• For a pair of spaces (X,A), we define Cn(X,A;R) = Cn(X;R)/Cn(A;R).
• A map of spaces f : (X,A) → (Y, B) induces a homomorphism

Cn(f ;R) : Cn(X,A;R) → Cn(Y, B;R), [σn : �n → X] �→ [f ◦ σn]

because f ◦ σn maps to B if σn maps to A.
• By construction, Cn(−;R) : Top(2) → R-mod is a functor.
• The differential ∂n descends to ∂n : Cn(X,A;R) −→ Cn−1(X,A;R).
• Clearly ∂n ◦ Cn(f ;R) = Cn−1(f ;R) ◦ ∂n, so C∗(f ;R) is a chain map.
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The last point verifies that C∗(−;R) : Top(2) −→ R-chain is a functor. So we are
now in the position to make our proposed definition official.

Definition 4.2
The n-th singular homology with coefficients in R of a pair of spaces (X,A) is the R-
module

H
sing
n (X, A; R) = Hn(C∗(X, A; R)).

Being a composition of functors, H
sing
n : Top(2) → R-mod is itself a functor. To

show that it defines a homology theory, we still have to produce the components

∂n(X,A) : H
sing
n (X,A;R) −→ H

sing
n−1(A;R)

of a natural transformation. It turns out that this is merely a task of algebra, and the
construction will give the long exact sequence of a pair at one fell swoop.

4.2 The Long Exact Sequence of a Pair of Spaces

The beginning of the field of homological algebra is the following lemma that
also has applications outside topology. The somewhat sophisticated appearance has
made it feature prominently in the opening scene of the 1980 American movie “It’s
my turn” starring Jill Clayburgh and Michael Douglas.

Lemma 4.3 (Snake Lemma)
A diagram in R-mod

with exact rows induces a natural exact sequence

which appears in the diagram

(continued)
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Proof Here is the task list for the proof: Construct the connecting homomorphism δ as a
map, check it is a homomorphism, show exactness of the sequence, and show naturality. We
will do the first two steps, exemplify exactness at ker g, and skip naturality.

To construct δ, let c ∈ ker h. Since j surjective, there exists b ∈ B such that j (b) = c

and b is unique up to adding an element i(a) for some a ∈ A by exactness at B. We have
j ′(g(b)) = h(j (b)) = h(c) = 0. Hence g(b) ∈ ker j ′ = im i′ by exactness at B ′. Since i′
is injective, there exists a unique a′ ∈ A′ with i′(a′) = g(b). We set δ(c) = a′ + im f ∈
coker(f ). In this fashion, δ is a well-defined map because g(i(a)) = i′(f (a)), thus f (a) is
the unique preimage of g(i(a)) under i′ and f (a) is trivial in coker f .

To check that δ is a homomorphism, let δ(c1) = a′
1 + im f , δ(c2) = a′

2 + im f , and
δ(c1 + c2) = a′

3 + im f with a′
i

defined via elements b′
i

as above. We have to show that
a′

1+a′
2−a′

3 ∈ im f . Indeed, we have i′(a′
1+a′

2−a′
3) = g(b1+b2−b3) and j (b1+b2−b3) =

c1+c2−(c1+c2) = 0. Exactness at B yields an element a ∈ A such that i(a) = b1+b2−b3.
For this element, we compute

i′(f (a)) = g(i(a)) = g(b1 + b2 − b3) = i′(a′
1 + a′

2 − a′
3).

Since i′ is injective, it follows that f (a) = a′
1 + a′

2 − a′
3.

Next we show exactness at ker g. Let x ∈ ker(j |ker g). Then x ∈ ker(j) ∩ ker(g). By
exactness at B, we have ker j = im i, so x ∈ im i, meaning there exists a ∈ A with i(a) = x.
It remains to show that a ∈ ker f . Now by injectivity of i′, we have f (a) = 0 if and only if
i′(f (a)) = g(i(a)) = 0. But g(i(a)) = g(x) = 0, so indeed a ∈ ker f , hence ker(j |ker g) ⊆
im(i|ker f ). Conversely, let x ∈ i(ker(f )). Then x = i(a) for some a ∈ ker f , hence g(x) =
g(i(a)) = i′(f (a)) = i′(0) = 0. Therefore x ∈ ker g but also x ∈ ker j = im(i) by exactness
at B. It follows that x ∈ ker(j |ker g), which shows im(i|ker f ) ⊆ ker(j |ker g). 
�
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Recall that an exact sequence of R-modules of the form

0 → A → B → C → 0

is called a short exact sequence (SES). A short exact sequence of chain complexes
of R-modules is a sequence of chain maps

0 → A∗ → B∗ → C∗ → 0

which gives a short exact sequence of R-modules in every degree.

Theorem 4.4
Let 0 → C∗ → D∗ → E∗ → 0 be a SES of chain complexes of R-modules. Then we
obtain a natural LES in homology

· · · → Hn(C∗) −→ Hn(D∗) −→ Hn(E∗)
δ−→ Hn−1(C∗) −→ Hn−1(D∗) → · · · .

Proof Applying the snake lemma to

gives that Cn/Bn(C∗) −→ Dn/Bn(D∗) −→ En/Bn(E∗) −→ 0 is exact. From

we get that 0 −→ Zn−1(C∗) −→ Zn−1(D∗) −→ Zn−1(E∗) is exact. Hence

is a diagram with exact rows. Applying the snake lemma one more time gives a six term
natural exact sequence in homology with the connecting homomorphism in the middle and
the remaining arrows induced by chain maps. Every six term sequence overlaps in three
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terms both with the predecessor and the successor. So they all unify to an infinite natural
exact sequence as required. 
�

Let (X,A) be a pair of spaces. Applying the theorem to the SES

(4.5)

of singular chain complexes, we finally obtain the missing natural transformations
∂n : H

sing
n −→ H

sing
n−1 ◦ J as connecting homomorphisms and we have proven the

following result.

Theorem 4.6
The pair (H

sing∗ , ∂∗) satisfies the LES axiom of a homology theory with coefficients in
R-mod.

Remark 4.7
For a triple B ⊆ A ⊆ X, we can more generally consider the SES

and obtain the natural LES of a triple

· · · → H
sing
n (A, B; R)

H
sing
n (i)−−−−−→ H

sing
n (X,B; R)

H
sing
n (j)−−−−−→ H

sing
n (X,A; R)

∂n−→ · · ·

where i : (A, B) → (X,B) and j : (X, B) → (X,A) are the inclusions. The LES of a
pair is then just the case B = ∅.

4.3 Homotopy Invariance

To prepare the verification of the axiom of homotopy invariance, we introduce
another notion from homological algebra.

Definition 4.8
An R-chain homotopy of R-chain maps f∗, g∗ : (C∗, c∗) → (D∗, d∗) is a family of
R-homomorphisms

hn : Cn → Dn+1

such that fn − gn = hn−1 ◦ cn + dn+1 ◦ hn.
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We will indicate chain homotopic chain maps symbolically by f∗ 
h∗ g∗. As the
terminology suggests, we have the following lemma.

Lemma 4.9
If f∗ 
h∗ g∗, then Hn(f∗) = Hn(g∗) for all n ∈ Z.

Proof For a cycle z ∈ Zn(C∗), the chain homotopy relation gives

fn(z) = gn(z) + hn−1(cn(z)) + dn+1(hn(z)).

The second summand vanishes because cn(z) = 0 while the third summand is a boundary in
D∗. Hence Hn(f∗)(z + Bn(C∗)) = Hn(g∗)(z + Bn(C∗)). 
�

It is easily confirmed that chain homotopy defines an equivalence relation on
the set of chain maps C∗ → D∗. Chain homotopy is moreover compatible with
composition in the sense that for two pairs of chain maps

f 1∗ , g1∗ : C∗ → D∗, f 2∗ , g2∗ : D∗ → E∗

such that f 1∗ 
 g1∗ and f 2∗ 
 g2∗, we have f 2∗ ◦ f 1∗ 
 g2∗ ◦ g1∗. A question that
could come to one’s mind is whether the converse of Lemma 4.9 holds true. So if
f∗, g∗ : (C∗, c∗) → (D∗, d∗) satisfy H∗(f∗) = H∗(g∗), can we conclude f∗ 
 g∗?
The answer is “no,” and it remains “no” even if C∗ and D∗ are free over Z. You will
construct a counterexample in Exercise 4.1.

A chain map f : (C∗, c∗) → (D∗, d∗) is called a chain homotopy equivalence if
it has a chain homotopy inverse g∗ : (D∗, d∗) → (C∗, c∗), which satisfies g∗◦f∗ 

id(C∗,c∗) and f∗ ◦ g∗ 
 id(D∗,d∗). In this case we write (C∗, c∗) 
f∗ (D∗, d∗).

Lemma 4.10
A chain homotopy equivalence (C∗, c∗) 
f∗ (D∗, d∗) induces homology isomor-
phisms H∗(f∗) in all degrees.

Proof Apply Lemma 4.9 and functoriality of Hn : R-chain → R-mod. 
�

We only mention that this lemma does have a partial converse: If a chain map
f∗ : (C∗, c∗) → (D∗, d∗) of chain complexes (C∗, c∗) and (D∗, d∗) consisting of
free modules over a principal ideal domain induces isomorphisms H∗(f∗) in all
degrees, then (C∗, c∗) and (D∗, d∗) are chain homotopy equivalent.
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After these algebraic preliminaries, let us now come to the proof of homotopy
invariance for singular homology. First we attack the absolute case when A,B = ∅.
So let F : X × I → Y be a homotopy from F0 = f to F1 = g. We have to show

H
sing∗ (f ;R) = H

sing∗ (g;R).

By Lemma 4.9, it is enough to construct a chain homotopy

Pn : C
sing
n (X;R) → C

sing
n+1(Y ;R)

from C
sing∗ (f, R) = f∗ to C

sing∗ (g;R) = g∗. Let σn : �n → X be a singular n-
simplex. We obtain a composition

�n × I
σn×idI−−−−→ X × I

F−−→ Y.

Geometrically, we think of “�n × I” as a prism, which we subdivide into (n + 1)-
simplices to define the prism operator Pn : C

sing
n (X;R) → C

sing
n+1(X;R) by

Pn(σ
n) =

n∑

i=0

(−1)iF ◦ (σn × idI )|[v0,...,vi ,wi ,...,wn],

where v0, . . . , vn are the vertices of the “bottom” simplex �n ×{0} and w0, . . . , wn

are the vertices of the “top” simplex �n × {1}. Such a subdivision is indicated in
Fig. 4.1. Note that

[v0, . . . , vi, wi, . . . , wn] = [v0, . . . , vi] ∗ [wi, . . . , wn],

is the join obtained by joining each point of the first space to each point of the
second space by a line segment. Thus it is a non-degenerate (n+1)-simplex that we
identify with �n+1 again by the unique linear homeomorphism that preserves the
vertex order. We claim that f∗ 
P∗ g∗ so that we have to show

∂n+1 ◦ Pn = gn − fn − Pn−1 ◦ ∂n.

Geometrically, the formula asserts that the boundary of the prism shaped singular
chain Pn(σ

n) consists of the top simplex gn ◦ σn, the bottom simplex fn ◦ σn, and

Fig. 4.1 The prism �2 × I

subdivided into three
3-simplices
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the vertical walls Pn−1(∂n(σ
n)). To verify the formula, we split the sum in two parts

according to whether the vertex gap occurs in the bottom or the top simplex

∂n+1(Pn(σ
n)) =

∑

0≤j≤i≤n

(−1)i(−1)jF ◦ (σn × idI )|[v0,...,v̂j ,...,vi ,wi ,...,wn]

+
∑

0≤i≤j≤n

(−1)i(−1)j+1F ◦ (σn × idI )|[v0,...,vi ,wi ,...,ŵj ,...,wn].

The summands with i = j cancel except for the summand with i = 0 from the first
sum and the summand with i = n from the second sum. Hence the term equals

F ◦ (σn × idI )|[w0,..,wn] − F ◦ (σn × idI )|[v0,...,vn] +
∑

j<i

(· · · ) +
∑

i<j

(· · · ).

The first summand equals gn(σ
n), the second summand equals −fn(σ

n), and the
remaining term is equal to

−
⎛

⎝
∑

i<j

(−1)i(−1)jF ◦ (σn × idI )|[v0,...,vi ,wi ,...,ŵj ,wn]

+
∑

j<i

(−1)i−1(−1)jF ◦ (σn × idI )|[v0,...,v̂j ,...,vi ,wi ,...,wn]

⎞

⎠

which is just −Pn−1(∂n(σ
n)) separated into two lines according to whether the

switch from bottom to top simplex happens before or after the vertex gap coming
from the boundary homomorphism. So the proof of the claim and therefore the proof
of homotopy invariance of singular homology in the absolute case are complete. For
general maps of pairs f, g : (X,A) → (Y, B) that are homotopic through maps of
pairs we obtain

Pn(C
sing
n (A;R)) ⊆ C

sing
n+1(B;R).

Thus Pn descends to a homomorphism

Pn : C
sing
n (X,A;R) −→ C

sing
n+1(Y, B;R)

and the relation gn − fn = ∂n+1 ◦ Pn + Pn−1 ◦ ∂n remains valid because it holds for
representatives. This shows that also the relative chain maps f∗ and g∗ induce the
same homomorphism in homology and we have proven the following theorem.

Theorem 4.11
The pair (H

sing∗ , ∂∗) satisfies the homotopy invariance axiom of a homology theory
with coefficients in R-mod.
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4.4 Excision

Recall that excision for simplicial homology as stated in Theorem 3.19 was straight-
forward to prove because an isomorphism can actually be implemented on the level
of chain complexes. There is however no hope to obtain a similar isomorphism of
singular chain complexes “Csing∗ (X \ A, Y \ A) ∼= C

sing∗ (X, Y )” because singular
simplices might neither be contained in X \ A nor in Y . Nonetheless, we can
subdivide a given singular simplex in X into a singular chain that respects the
decomposition X = (X\A)∪Y . As an outcome of this technique, we will construct a
chain homotopy equivalence C

sing∗ (X\A, Y \A) 
 C
sing∗ (X, Y ) which, as discussed

in the previous section, is enough to obtain isomorphisms in homology.
To make this program precise, let us now assume more generally that our space

X comes with a family of subspaces U = {Uj } such that
⋃

j Ůj = X. Let

CU
n (X;R) ⊆ C

sing
n (X;R) be the submodule generated by all σn : �n → X with

σn(�n) ⊆ Uj for some j . An element c ∈ CU
n (X;R) is called a U -small chain.

Clearly, CU∗ (X;R) is a subcomplex of C
sing∗ (X;R), meaning

∂(CU
n (X;R)) ⊆ CU

n−1(X;R)

for all n and the inclusion i∗ : CU∗ (X;R) → C
sing∗ (X;R) is a chain map. Since

for each j , singular simplices in Uj are U -small, we have further inclusions of

subcomplexes C
sing∗ (Uj ) ⊆ CU∗ (X) for all j .

Proposition 4.12

The inclusion i∗ : C
U(X;R)∗ → C

sing∗ (X; R) has a chain homotopy inverse

r∗ : C
sing∗ (X; R) → CU∗ (X; R) such that r∗ ◦ i∗ = idCU∗ (X;R) and such that

i∗ ◦ r∗ 
F∗ id
C

sing∗ (X;R)
with F∗(C

sing∗ (Uj )) ⊆ C
sing
∗+1(Uj ) for all j .

So the chain homotopy inverse r∗ makes singular chains U -small without touch-
ing those chains that are already U -small. Once we have proven the proposition, the
excision axiom is readily verified.

Theorem 4.13
The pair (H

sing∗ , ∂∗) satisfies the excision axiom of a homology theory with coefficients
in R-mod.
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Proof Given a triple (X, Y, A) such that A ⊆ Y̊ , let U = {X\A, Y }. We have ˚(X\A) ∪ Y̊ =
(X\Ā) ∪ Y̊ = X. So Proposition 4.12 provides us with a chain homotopy inverse

r∗ : C
sing∗ (X;R) −→ CU∗ (X;R)

of the inclusion i∗ : CU∗ (X;R) → C
sing∗ (X;R) such that r∗ ◦ i∗ = idCU∗ (X;R) and such

that i∗ ◦ r∗ 
F∗ id
C

sing∗ (X;R)
with F∗(C

sing∗ (Y )) ⊆ C
sing
∗+1(Y ). Since singular chains in Y

are U-small, C
sing∗ (Y ; R) is a common subcomplex of both CU∗ (X; R) and C

sing∗ (X; R). The
relation r∗ ◦ i∗ = idCU∗ (X;R) ensures that not only i∗ but also r∗ restricts to the identity on

the subcomplex C
sing∗ (Y ; R). Thus i∗ and r∗ descend to chain maps

CU∗ (X;R)/C
sing∗ (Y ; R) ←→ C

sing∗ (X;R)/C
sing∗ (Y ; R). (4.14)

The latter chain complex is just C
sing∗ (X, Y ; R). Since F∗(C

sing∗ (Y )) ⊆ C
sing
∗+1(Y ), also

F∗ descends to a chain homotopy from i∗ ◦ r∗ to the identity on C
sing∗ (X, Y ; R). Hence the

two chain complexes in (4.14) are chain homotopy equivalent. The first chain complex is by
definition a quotient of a non-direct sum of subcomplexes

CU∗ (X; R)/C
sing∗ (Y ;R) =

(
C

sing∗ (X \ A; R) + C
sing∗ (Y ; R)

)
/C

sing∗ (Y ; R),

hence isomorphic to C
sing∗ (X\A; R)/C

sing∗ (Y \A; R) = C
sing∗ (X\A, Y \A; R) because both

chain complexes are free on the set of singular simplices in X \ A, which are not contained
in Y . Lemma 4.10 completes the proof. 
�

The idea of the proof of the proposition is to construct a chain homotopy inverse
r∗ by subdividing simplices to make them U -small. We already encountered the
technique to do so in Sect. 3.5: barycentric subdivision. Recall that barycentric
subdivision is defined inductively as follows. A 1-simplex is subdivided into two 1-
simplices by adding the midpoint as another vertex. An n-simplex is subdivided into
the (n+1)! different n-simplices formed by the cones whose common tip point is the
barycenter of �n and whose bases are the (n−1)-simplices in the (n+1) subdivided
faces of �n. As a first naive approach, we can try and define r∗ by subdividing each
simplex precisely as many times as necessary to make it U -small. The problem is
that this will not define a chain map in general because it can happen that one has
to subdivide a given simplex to make it U -small while it would not be necessary
to subdivide the faces as is illustrated in Fig. 4.2. Therefore certain simplices could
map to different chains along the two compositions in the square
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Fig. 4.2 Barycentric
subdivision transforms this
2-simplex into a U-small
chain but the faces are already
U-small to begin with

So to enforce that r∗ becomes a chain map, we will need to “undo” unnecessary
subdivisions at the boundary. With these ideas in mind, let us now begin the formal
proof of Proposition 4.12.

As a first step, we give a formal treatment of barycentric subdivision. Any
p + 1 points v0, . . . , vp ∈ �q define an affine linear map �p → �q . We shall
allow ourselves an abuse of notation and denote this map by σ = [v0, . . . , vp].
Considering the q-simplex �q itself as the topological space under investigation,
let Lp(�q;R) ⊂ C

sing
p (�q;R) be the free R-module with basis the affine linear p-

simplices in �q . We agree Lp(�q;R) = 0 for p < 0 so that L∗(�q;R) is clearly a

subcomplex of C
sing∗ (�q;R). Any fixed point v ∈ �q defines the “cone simplex”

vσ = [v, v0, . . . , vp] : �p+1 −→ �q.

Forming cones vσ on affine linear p-simplices σ yields an R-homomorphism

v : Lp(�q;R) −→ Lp+1(�
q;R).

For σ = [v0, . . . , vp], let σ b := 1
p+1 (v0 + · · · + vp) be the barycenter of σ .

Definition 4.15
The homomorphism Bp : Lp(�q ; R) → Lp(�q ; R) defined inductively by B0(σ ) = σ

and Bp(σ) = σ bBp−1(∂p(σ )) is called the barycentric subdivision operator.

So for p = 1 and σ = [v0, v1], we obtain

B1(σ ) = σ b(B0(∂1(σ ))) = σ b(B0([v1] − [v0])) = σ b([v1] − [v0]) =
=

[
1
2 (v0 + v1), v1

]
−

[
1
2 (v0 + v1), v0

]

and for p = 2 and σ = [v0, v1, v2], we get accordingly

B2(σ ) = σ b(B1 ◦ ∂2([v0, v1, v2])) = σ b(B1([v1, v2] − [v0, v2] + [v0, v1])) =
= σ b

([
1
2 (v1 + v2), v2

]
−

[
1
2 (v1 + v2), v1

]
−

[
1
2 (v0 + v2), v2

]
+

+
[

1
2 (v0 + v2), v0

]
+

[
1
2 (v0 + v1), v1

]
−

[
1
2 (v0 + v1), v0

])
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=
[
σ b, 1

2 (v1 + v2), v2

]
−

[
σ b, 1

2 (v1 + v2), v1

]
−

[
σ b, 1

2 (v0 + v2), v2

]
+

+
[
σ b, 1

2 (v0 + v2), v0

]
+

[
σ b, 1

2 (v0 + v1), v1

]
−

[
σ b, 1

2 (v0 + v1), v0

]

with σ b = 1
3 (v0 + v1 + v2). A visualization was given in Fig. 3.4.

Lemma 4.16
Setting Bp = 0 for p < 0, the family of barycentric subdivision operators defines a
chain map B∗ : L∗(�q ; R) −→ L∗(�q ; R).

Proof We show the equality ∂p ◦ Bp = Bp−1 ◦ ∂p by induction on p. For p ≤ 0, equality is
trivial. For the induction step, we observe that for p ≥ 0, every σ = [v0, . . . , vp] and every
v ∈ �q satisfy the relation

∂p+1(vσ ) = σ +
p∑

i=0

(−1)i+1[v, v0, . . . , v̂i , . . . , vp] = σ − v∂pσ.

Geometrically, this means the boundary of a cone simplex consists of the base simplex and
the cone of the faces of the base simplex with suitable signs. Combining the formula with
∂p−1 ◦ Bp−1 = Bp−2 ◦ ∂p−1 by induction hypothesis, we obtain

∂p(Bp(σ )) = ∂p(σ b(Bp−1(∂p(σ )))) = Bp−1(∂p(σ )) − σ b(∂p−1(Bp−1(∂p(σ )))) =
= Bp−1(∂p(σ )) − σ b(Bp−2(∂p−1(∂p(σ )))) = Bp−1(∂p(σ ))

because ∂p−1 ◦ ∂p = 0. 
�

Lemma 4.17
The diameter of the simplices in Bp(σ) is at most p

p+1 · diam(σ ).

Proof Since the simplices in Bp(σ) are affine linearly embedded in �q ⊂ R
q+1, the lemma

has the same proof as Lemma 3.23 
�

Lemma 4.18
The homomorphisms h∗ : L∗(�q ; R) → L∗+1(�q ; R) defined inductively by hp = 0
for p < 0 and hp(σ ) = σ b(σ − hp−1(∂p(σ ))) for p ≥ 0 form a chain homotopy
idL∗(�q ;R) 
h∗ B∗.
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Proof We show the equality idLp(�q ;R) −Bp = hp−1 ◦ ∂p + ∂p+1 ◦ hp by induction on
p. For p < 0, equality is trivial. For p = 0, equality is clear because h0([v]) = [v, v]. For
p > 0, we use the identity ∂p+1(vσ ) = σ − v∂pσ from above to compute

∂p+1(hp(σ )) = ∂p+1(σ b(σ − hp−1(∂p(σ )))) =
= σ − hp−1(∂p(σ )) − σ b∂p(σ − hp−1(∂p(σ ))) =
= σ − hp−1(∂p(σ )) − σ b∂p(σ ) + σ b∂p(hp−1(∂p(σ ))).

By the induction hypothesis, we have

∂php−1(∂p(σ ))) = ∂p(σ ) − Bp−1(∂p(σ )) − hp−2(∂p−1(∂p(σ ))) =
= ∂p(σ ) − Bp−1(∂p(σ )).

Substituting this above, we obtain

∂p+1(hp(σ )) = σ − hp−1(∂p(σ )) − σ b∂p(σ ) + σ b∂p(σ ) − σ bBp−1(∂p(σ )) =
= σ − hp−1(∂p(σ )) − Bp(σ). 
�

The chain homotopy h∗ in degree one and two is pictured in Fig. 4.3. The
homomorphism h1 transforms each 1-simplex into a chain of three 2-simplices.
The homomorphism h2 transforms each 2-simplex into a chain of ten 3-simplices.
Next we elegantly transport the barycentric subdivision procedure from affine linear
chains on �q to singular chains on any topological space X. To do so, we define
a natural transformation B(−)∗ : C

sing∗ (−;R) −→ C
sing∗ (−;R) as follows. The

component at X is defined by

B(X)p : C
sing
p (X;R) −→ C

sing
p (X;R)

σp �−→ C
sing
p (σp;R)(Bp(id�p)).

In words, we apply the functor C
sing
p (−;R) to the continuous map σp : �p →

X and evaluate the resulting homomorphism on the barycentric subdivision of the

Fig. 4.3 Illustration of the chain homotopy h∗ in degree one and two. To make the geometric
structure visible, we shifted all occurring barycenters below their actual position. In fact, the
vertical dimension is compressed to zero
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singular simplex id : �p → �p. Similarly, the chain homotopy h∗ gives rise to the

natural transformation h(−)∗ : C
sing∗ (−;R) → C

sing
∗+1(−;R) defined by

h(X)p : C
sing
p (X;R) −→ C

sing
p+1(X;R)

σp �−→ C
sing
p+1(σ

p;R)(hp(id�p)).

Lemma 4.19
The homomorphisms B(X)∗ : C

sing∗ (X; R) → C
sing∗ (X; R) form a chain map and

id
C

sing∗ (X;R)

h(X)∗ B(X)∗.

Proof In degree p ≤ 0, the asserted relations are clear. For fixed p > 0, we refer to the
inclusion fi : [v0, . . . , v̂i , . . . , vp] −→ [v0, . . . , vp] of the i-th face into the standard p-

simplex as the i-th face map of �p . For σp ∈ C
sing
p (X; R), we have

Bp−1(X)(∂pσp)=
p∑

i=0

(−1)iC
sing
p−1(σp ◦ fi)(Bp−1(id�p−1)) =

=
p∑

i=0

(−1)iC
sing
p−1(σp)(C

sing
p−1(fi)(Bp−1(id�p−1))) =

=
p∑

i=0

(−1)iC
sing
p−1(σp)(Bp−1(fi))=C

sing
p−1(σp)

⎛

⎝Bp−1

⎛

⎝
p∑

i=0

(−1)ifi

⎞

⎠

⎞

⎠

which is just C
sing
p−1(σp)(Bp−1(∂p id�p)) = ∂pC

sing
p (σp)(Bp(id�p)) = ∂pBp(X)(σp)

because C
sing∗ (σp) is a chain map and so is B∗ on affine linear chains by Lemma 4.16.

Using Lemma 4.18, a similar computation shows id
C

sing∗ (X;R)

h(X)∗ B(X)∗. 
�

By compatibility of chain homotopy and composition, we obtain inductively that
also the k-th iteration Bk∗(X) of barycentric subdivision

Bk(X)∗ 
 B(X)∗ ◦ Bk−1(X)∗ 
 Bk−1(X)∗ 
 id
C

sing∗ (X;R)

is chain homotopic to the identity. An explicit chain homotopy from id
C

sing∗ (X;R)
to

Bk(X)∗ is given by

Gk∗ :=
k−1∑

i=0

h(X)∗ ◦ Bi(X)∗
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Fig. 4.4 The chain homotopy G2∗ connects a 1-simplex to its twofold subdivision. Again, in fact
the vertical dimension is compressed to zero

with B0(X)∗ = id∗ because we have the telescope sum calculation

∂∗+1G
k∗ + Gk

∗−1∂∗ =
k−1∑

i=0

(
∂∗+1h(X)∗ ◦ Bi(X)∗ + h(X)∗−1B

i(X)∗−1∂∗
)

=
k−1∑

i=0

(∂∗+1h(X)∗ + h(X)∗−1∂∗) Bi(X)∗

=
k−1∑

i=0

(id∗ −B(X)∗) Bi(X)∗

=
k−1∑

i=0

(
Bi(X)∗ − B(X)i+1∗

)
= id∗ −Bk(X)∗. (4.20)

A picture of how G2
1 acts on a 1-simplex is given in Fig. 4.4.

Lemma 4.21
For any family of subspaces U = {Ui} with

⋃
Ůi = X and for all σp : �p → X,

there exists an integer k ≥ 0 such that Bk(X)p(σp) is U-small.

Proof Pick a Lebesgue-δ associated with the open cover {(σp)−1(Ůi )} of the compact metric
space �p . Then for any integer k ≥ 0 with

√
2(

p
p+1 )k < δ, Lemma 4.17 shows that the

diameter of the simplices in the chain Bk
p(id�p) is bounded from above by δ and hence

Bk(X)p(σp) is U-small. 
�

After all these preliminaries, we can now finally tackle the proof of Proposi-
tion 4.12. So fix a family of subspaces U = {Ui} with

⋃
Ůi = X. We define a

homomorphism Fp : C
sing
p (X;R) → C

sing
p+1(X;R) on the basis as follows. For a

given singular p-simplex σp, let k(σp) be the minimal k as in Lemma 4.21 and set
Fp(σp) = G

k(σp)
p (σp). Using this, we define an endomorphism rp of C

sing
p (X) by

rp(σp) := Bk(σp)(X)p(σp) + G
k(σp)
p−1 (∂p(σp)) − Fp−1(∂p(σp)).
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The formula might look intimidating but it makes the idea precise that we tried to
convey in the beginning. The first summand subdivides the singular simplex σp as
many times as necessary to make it U -small. The second summand adds a chain
of p-simplices to the boundary of σp such that the boundary of this chain is the
difference of the undivided boundary and the k(σp)-times subdivided boundary of
σp. So the second summand undoes the subdivision of the boundary produced by the
first summand: The boundary of the sum of the first two terms is just the boundary
of σp. Finally, the third summand adds a p-chain at each face of σp that connects
the undivided face to a copy of itself that is subdivided as many times as necessary
to make it U -small.

We first observe that r∗(Csing∗ (X;R)) ⊆ CU∗ (X;R) because this is true for the
first summand by construction and because all but the U -small simplices cancel out
in the difference G

k(σp)
∗−1 (∂p(σp)) − F∗−1(∂p(σp)). From (4.20), we get

∂pGk(σp)
p (σp) + G

k(σp)
p−1 ∂p(σp) = σp − Bk(σp)(X)p(σp).

Using the definition of rp, we can rewrite this equation as

∂pFp(σp) + Fp−1∂p(σp) = σp − rp(σp).

This shows firstly that

∂prp(σp) = ∂pσp − ∂pFp−1∂p(σp) = rp−1∂p(σp)

as we see by applying the relation twice. So r∗ : C
sing∗ (X;R) −→ CU∗ (X;R) is a

chain map. Secondly, the relation says precisely that id
C

sing∗ (X;R)

F∗ i∗ ◦r∗. Finally,

we have r∗ ◦ i∗ = id∗ because k(σp) = 0 for every σp ∈ CU
p (X;R) and we have

F∗(Csing∗ (Uj )) ⊆ C
sing
∗+1(Uj ) for all j because the (p + 1)-chain Fp(σp) has the

same image in X as σp. This completes the proof of Proposition 4.12 and hence of
Theorem 4.13.

We now turn to the dimension axiom that is by far the easiest to verify for singular
homology. Actually, the singleton space will be the only space whose singular
homology we will ever compute by considering the singular chain complex.

Theorem 4.22
The pair (H

sing∗ , ∂∗) satisfies the dimension axiom of a homology theory with values
in R-mod and has coefficient module H0(•) ∼= R.

Proof The singleton “•” is a terminal object in the category Top. So for each n ≥ 0, there

exists precisely one map �n → •. Thus the singular chain complex C
sing∗ (•;R) has the form
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where the upper line indicates the degree. The differentials alternate between the trivial
homomorphism and the identity homomorphism because

∂(σn) =
n∑

i=0

(−1)iσn−1 =
{

σn−1 if n is even
0 if n is odd

.

From this description the assertion is clear. 
�

Theorem 4.23
The pair (H

sing∗ (−, −; R), ∂∗) is an ordinary homology theory with values in R-mod
and coefficient module H0(•) ∼= R.

Proof This is just the triumphant summary of the last four theorems. 
�

We conclude this section with a mild generalization. Given an arbitrary R-
module M , we define singular homology with coefficients in M by the homology
H

sing∗ (X,A;M) of the chain complex C
sing∗ (X,A;M) := C

sing∗ (X,A;R) ⊗R M

with differentials ∂∗ ⊗ idM . Let us check that this defines an ordinary homology
theory with values in R-mod and coefficient module H0(•) ∼= M . For the dimension
axiom, the given proof applies without change. For the LES axiom, one has to keep
in mind that the (−)⊗R M-functor, which on morphisms acts by (−)⊗R idM , is not
necessarily left exact. So it is not a priori clear that it will turn the SES in (4.5) into
a SES again. However, the SES splits by the splitting lemma (Lemma 3.18) because
C∗(X,A;R) is free so that we do obtain a SES after applying the functor and the
rest of the proof goes through as before. In view of the chain homotopies P∗ and F∗
constructed above, the homotopy invariance and excision axioms follow because the
(−) ⊗R M-functor takes chain homotopies to chain homotopies. Since (−) ⊗R R

is (naturally isomorphic to) the identity functor, we recover the old definition for
M = R. We have thus shown existence of an ordinary homology theory with an
arbitrarily prescribed coefficient module H0(•). Later in the course (Theorem 6.40),
we will complement this result by a uniqueness theorem for ordinary homology
theories on a reasonable subcategory of Top(2).

4.5 Singular Homology in Degree Zero and One

From the definition of singular homology it is intuitively apparent that two cycles
in a space X only have a chance to be homologous if they lie in the same
path component of X. Moreover, two points in the same path component define
homologous 0-simplices because a path joining them can be interpreted as a 1-
simplex. So the zeroth singular homology informs about the number of path
components of a space. In a similar vein, after taking another glance on Fig. 3.2,
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it is conceivable that the first integral singular homology of a path connected space,
albeit always abelian, should be related to the fundamental group. In this section, we
will clarify this relationship. Let us fix an R-module M . Note that a map f : X → Y

induces a map of sets π0(f ) : π0X → π0Y by continuity.

Theorem 4.24
We have a natural isomorphism

H
sing
n (X;M) ∼=

⊕

Xα∈π0X

H
sing
n (Xα; M).

Proof For all σn ∈ C
sing
n (X;R), the space σn(�n) is path connected. Thus

C
sing
n (X; R) =

⊕

Xα∈π0X

C
sing
n (Xα;R) and ∂(C

sing
n (Xα; R)) ⊆ C

sing
n−1(Xα; R)

so that we obtain the asserted decomposition already on the chain complex level. The functor
(−) ⊗R M preserves this decomposition. The statement and proof of naturality are clear. 
�

The same proof shows that singular homology with any coefficient module
preserves coproducts. Let us express this property as a separate axiom as follows.

Theorem 4.25
Singular homology (H

sing∗ , ∂∗) satisfies the additivity axiom: the inclusions Xj →
X = ∐

i∈I Xi induce isomorphisms
⊕

i∈I Hn(Xi)
∼= Hn(X) for all n.

Be aware that every homology theory (H∗, ∂∗) satisfies finite additivity:⊕k
i=1 Hn(Xi) ∼= Hn(

∐k
i=1 Xi). This holds because the inclusion i : X → X

∐
Y

is split injective (unless X is empty and Y is nonempty in which case we swap the
roles of X and Y ), so that the LES of (X

∐
Y,X) splits up into split SESes

0 −→ H∗(X) −→ H∗(X
∐

Y ) −→ H∗(X
∐

Y,X) −→ 0

and H∗(X
∐

Y,X) ∼= H∗(Y ) by excision. So the value of the theorem is that H
sing
n

also preserves infinite coproducts. However, it does not preserve general colimits in
Top, not even general pushouts. Instead, for homotopy pushouts one obtains a long
exact sequence, the Mayer–Vietoris sequence, as we will see later in Sect. 5.3.
For short we will say a homology theory is additive if it satisfies the additivity
axiom.
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Theorem 4.26
We have an isomorphism H

sing
0 (X;M) ∼= ⊕

π0X
M .

Proof By Theorem 4.25, we only have to show H
sing
0 (X; M) ∼= M if X is path connected

and nonempty. Consider the augmentation homomorphism

ε : C
sing
0 (X;R) −→ R,

∑

i

miσ
0
i �−→

∑

i

ri ,

which sums the coefficients of a singular 0-chain. It is clearly surjective and we claim that
ker ε = im ∂1. Indeed, we have im ∂1 ⊆ ker ε because ε(∂1(σ 1)) = ε(σ 1|[v1] − σ 1|[v0]) =
1 − 1 = 0. To see ker ε ⊆ im ∂1, let ε

(∑
i riσ

0
i

)
= 0 so that

∑
i ri = 0. Fix a point x0 ∈ X

and pick paths γi : I → X with γi(0) = x0 and γi(1) = σ 0
i
(v0) for all i. Each γi can

be interpreted as a 1-simplex σ 1
i

: �1 → X and we can form the singular 1-chain
∑

i riσ
1
i

whose singular boundary is

∑

i

riσ
1
i |[v1] −

∑

i

riσ
1
i |[v0] =

∑

i

riσ
1
i |[v1] −

⎛

⎝
∑

i

ri

⎞

⎠ σ 1
i |[v0] =

∑

i

riσ
0
i .

Thus we have shown that the sequence

C
sing
1 (X; R)

∂1−−→ C
sing
0 (X; R)

ε−→ R −→ 0

is exact. Since the (−) ⊗R M-functor is right exact by Exercise 3.6, the sequence remains

exact after applying (−) ⊗R M . This proves H
sing
0 (X;M) ∼= M . 
�

Let X be a nonempty space. If we consider a path f : I → X as a singular
1-simplex f : �1 → X, then this 1-simplex forms a 1-cycle if and only if the
path f is a loop, meaning f (0) = f (1). This observation leads to the Hurewicz
homomorphism in degree one on which we have the following theorem.

Theorem 4.27 (Hurewicz Theorem in Degree One)
The assignment

Hur : π1(X, x0) −→ H
sing
1 (X;Z), [f ] �−→ f + B

sing
1 (X;Z)

yields a well-defined group homomorphism, which is natural with respect to pointed
maps. If X is path connected, then Hur descends to an isomorphism

Hurab : π1(X, x0)ab
∼=−−→ H

sing
1 (X,Z).

Thus ker Hur = [π1(X, x0), π1(X, x0)] is the commutator subgroup of π1(X, x0).
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Fig. 4.5 The 2-simplex σ 2

restricts to f and g on the
boundary as shown

Proof To show well-definedness, we give an alternative description of the Hurewicz homo-

morphism. The fundamental class [S1] ∈ H
sing
1 (S1;Z) is the homology class represented

by the singular 1-cycle given by wrapping the standard 1-simplex �1 once around the
circle, say counter-clockwise at constant speed, starting and ending at 1 ∈ S1. We identify
I/∂I ∼= S1 so that given [f ] ∈ π1(X, x0), we obtain an induced map f : S1 → X. Then

Hur([f ]) = H
sing
1 (f ;Z)([S1]), so Hur is well-defined as a map by Theorem 4.11.

To see that it is a homomorphism, let [f ], [g] ∈ π1(X, x0). We consider the singular 2-
simplex σ 2 given by the orthogonal projection [v0, v1, v2] → [v0, v2] composed with the
map fg : [v0, v2] → X that follows the path f on the line segment from v0 to the barycenter
of [v0, v2] and follows the path g on the line segment of [v0, v2] from the barycenter to
v2. The map is indicated in Fig. 4.5. We have ∂2(σ 2) = g − fg + f , so f + g − fg is a 1-
boundary. Identifying [v0, v2] with the unit interval I , the pointed homotopy class [fg] is just
the composition of [f ] and [g] in π1(X, x0), so we have Hur([f ][g]) = Hur([f ])+Hur([g])
as claimed.

Naturality of the Hurewicz homomorphism for a pointed map g : (X, x0) → (Y, y0) is
easily verified by means of the above description of Hur. Indeed, we have

H
sing
1 (g)(Hur([f ]) = H

sing
1 (g)(H

sing
1 (f )([S1]) = H

sing
1 (g ◦ f )([S1]) =

= Hur([g ◦ f ]) = Hur(π1(g)([f ])).

Now assume X is path connected. To see that Hurab is an isomorphism, pick paths γx

from x0 to x for all x ∈ X. Using these, we define a homomorphism ψ : C
sing
1 (X;Z) →

π1(X, x0)ab of abelian groups on the generating 1-simplices by ψ(f ) = [γf (v0) f γf (v1)]ab.

We verify that ψ descends to a homomorphism ψ : H
sing
1 (X;Z) → π1(X, x0)ab. So

let σ 2 : �2 = [v0, v1, v2] → X be a singular 2-simplex. We have to show that
ψ(∂σ 2) = 0. Let f , g, and h be the zeroth, first, and second face of σ 2. Then
ψ(∂2(σ 2)) = ψ(f − g + h) = ψ(f ) − ψ(g) + ψ(h) is represented by the concate-
nation γσ 2(v1)

f γσ 2(v2)
γσ 2(v2)

g γσ 2(v0)
γσ 2(v0)

h γσ 2(v1)
, which is pointed homotopic to

γσ 2(v1)
f g h γσ 2(v1)

and hence pointed null-homotopic because the loop f g h can be shrunk

to the constant loop at v1 through the interior of σ 2. Hence ψ(∂2σ 2) = 0 as required. We
claim that ψ is the inverse of Hurab. Indeed, on the one hand, we have

ψ(Hurab([f ]ab)) = ψ(f + B1) = [γf (v0) f γf (v1)]ab = [γx0 ]ab + [f ]ab − [γx0 ]ab = [f ]ab

for all [f ]ab ∈ π1(X, x0)ab with B1 = B
sing
1 (X;Z). Next we observe that the assignment

sending x ∈ X to the 1-simplex γx extends to a homomorphism γ : C
sing
0 (X,Z) →
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C
sing
1 (X;Z). For a singular 1-chain c ∈ C

sing
1 (X;Z), we then have Hurab ◦ ψ(c) =

c + γ (∂c) + B1. It follows that on the other hand

Hurab(ψ(z + B1)) = z + γ (∂z) + B1 = z + γ (0) + B1 = z + B1

for all z + B1 ∈ H
sing
1 (X;Z). 
�

In the example (X, x0) = (S1, 1), let f : I → S1 be the generator of π1(X, x0) =
π1(X, x0)ab given by f (t) = exp(2π it). We then have

Hur(f ) = H
sing
1 (idS1;Z)([S1]) = id

H
sing
1 (S1;Z)

([S1]) = [S1],

so the fundamental class [S1] is actually a generator of the infinite cyclic group
H

sing
1 (S1;Z). Similarly, we have fundamental classes [Sn] generating H

sing
n (Sn;Z)

for all n > 1. Correspondingly, we obtain the higher Hurewicz homomorphisms
Hurn : πn(X, x0) → H

sing
n (X;Z) given by Hurn(f ) = H

sing
n (f ;Z)([Sn]). We just

inform the reader that for these, one can prove the Hurewicz theorem in higher
degrees, which asserts that if πk(X, x0) is trivial for k < n, then Hurn is an
isomorphism and Hurn+1 is surjective.

Witold Hurewicz, born 1904 in Łódź, was an influential Polish–American
mathematician. He proved the Hurewicz theorem on the first homology group
as well as the generalization to higher homotopy groups. While being a
brilliant thinker, the “Dictionary of Scientific Biography” [6] also describes
him as notoriously absentminded and suggests that this trait might have
been the reason for the sudden end of his life. On an excursion during the
International Symposium on Algebraic Topology at the National Autonomous
University of Mexico, he tragically fell off the top of a Mayan step pyramid in
Uxmal on the peninsula of Yucatán on September, 4th, 1956 and died two days
later in a hospital in Mérida from his severe injuries [17]. His mathematics,
however, will live forever on.

Exercises

4.1 This exercise is based on an example appearing in [10, p. 106]. Consider the
following diagram in Ab (equivalently Z-mod).
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(a) Explain that the rows define chain complexes (C∗, c∗) and (D∗, d∗) and that the
vertical arrows form a chain map φ∗ : (C∗, c∗) → (D∗, d∗).

(b) Show that Hn(φ∗) = 0 for all n ∈ Z.
(c) Show that φ∗ is not chain homotopic to the zero chain map.

4.2 A chain complex (C∗, c∗) of R-modules is called exact (also acyclic) if
ker cn = im cn+1 for all n ∈ Z. It is called contractible if the identity chain map
idC∗ is chain homotopic to the zero chain map. Let C∗ be the exact chain complex
given by a short exact sequence of R-modules filled up with trivial modules in
all remaining degrees. Show that C∗ is contractible if and only if the short exact
sequence splits.

4.3 Show that setting hn(X,A) := ∏
k H

sing
k (X,A;Z) /

⊕
k H

sing
k (X,A;Z) inde-

pendent of n with boundary map ∂∗ : hn(X,A) → hn−1(A) induced from the
singular differential in the apparent way defines a homology theory satisfying
hn(•) = 0 for all n ∈ Z. Show that (h∗, ∂∗) is not additive and hence in particular
not zero.

4.4 Give an example of a nontrivial covering map Y → X with H
sing
0 (Y ;Z) ∼= Z

and H
sing
1 (X;Z) = 0.
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Now that we have verified the Eilenberg–Steenrod axioms for singular homology
and analyzed what it has to say in low degrees, the rules of the game are to avoid
any more arguments with simplices. Instead, we derive conclusions from the axioms
only, to make sure that the results will be valid for all homology theories. So until
further notice, in this chapter (H∗, ∂∗) denotes a homology theory with values in
R-mod.

5.1 Relative vs. Absolute Homology

Wemotivated the definition of relative homology Hn(X,A) in the simplicial context
of Sect. 3.3 by saying that sometimes one wants to disregard the homology produced
by the subspace A. However, it seems that the same can be achieved by just
considering the absolute homology Hn(X/A) of the quotient space X/A in which A

is collapsed to point. So the question arises if we have an isomorphism Hn(X/A) ∼=
Hn(X,A). The answer is “typically yes,” but “generally no.” In fact, we will show
that the answer is yes if the homology theory (H∗, ∂∗) is ordinary, if (X,A) is a
cofibration, and if n ≥ 1.

To start, recall that in Remark 4.7 we encountered the triple sequence of singular
homology. We want to see that this more general long exact homology sequence is
not intrinsic to singular homology but can in fact be deduced from the axioms of
any homology theory. The key argument is another diagram chase.
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Lemma 5.1 (Braid Lemma)
Consider the commutative diagram

consisting of four interwoven sequences of R-modules. If each of the three solid
sequences is exact and the dotted sequence is a chain complex, then also the dotted
sequence is exact.

Proof It will hardly cost more effort to do the chase yourself than to read this proof. Every
object in the diagram is the domain of two arrows, an upper one and a lower one. To refer to
these arrows, we write u for the upper and l for the lower arrow and we add the domain as
an index. By the chain complex condition on the dotted sequence, we only need to verify the
“ker ⊆ im” inclusion at I , F , and C.

Exactness at I . Let i ∈ ker uI . Then lI (i) = lF (uI (i)) = lF (0) = 0, hence there exists
e ∈ E with lE(e) = i. Since lB(uE(e)) = uI (lE(e)) = uI (i) = 0, there exists a ∈ A such
that uA(a) = uE(e). Thus uE(e − lA(a)) = uE(e) − uA(a) = 0. Therefore, there exists
h ∈ H such that uH (h) = e − lA(a). It follows that lH (h) = lE(uH (h)) = lE(e − lA(a)) =
i − lE(lA(a)) = i.

Exactness at F . Let f ∈ ker uF . Then uJ (lF (f )) = lC(uF (f )) = lC(0) = 0, so there
exists i ∈ I with lI (i) = lF (f ). Thus we have lF (f −uI (i)) = lF (f )−lF (uI (i)) = lF (f )−
lI (i) = lF (f )− lF (f ) = 0. This shows that there exists b ∈ B such that lB(b) = f −uI (i).
We have uB(b) = uF (lB(b)) = uF (f − uI (i)) = −uF (uI (i)) = 0, so there exists e ∈ E

with uE(e) = b. Thus we have uI (lE(e) + i) = uI (lE(e)) + uI (i) = lB(uE(e)) + uI (i) =
lB(b) + uI (i) = f − uI (i) + uI (i) = f .

Exactness at C. Let c ∈ ker uC . Then uG(lC(c)) = 0, so there exists j ∈ J with uJ (j) =
lC(c). We have lJ (j) = lG(uJ (j)) = lG(lC(c)) = 0, thus we obtain f ∈ F such that
lF (f ) = j . Since lC(c − uF (f )) = lC(c) − lC(uF (f )) = lC(c) − uJ (lF (f )) = lC(c) −
uJ (j) = lC(c) − lC(c) = 0, there exists b ∈ B such that uB(b) = c − uF (f ). This shows
that uF (lB(b)+f ) = uF (lB(b))+uF (f ) = uB(b)+uF (f ) = c−uF (f )+uF (f ) = c. ��

Theorem 5.2 (Triple Sequence)
For every triple (X, A, B) of spaces, we have a natural LES

where i : (A, B) → (X,B) and j : (X, B) → (X, A) denote the inclusions.
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Proof We define the boundary homomorphism ∂n by the composition

Hn(X,A)
∂(X,A)−−−−→ Hn−1(A)

Hn−1(l)−−−−−→ Hn−1(A,B)

with the inclusion l : (A, ∅) → (A,B) so that we get a commutative braid diagram

in which three strings are exact, to wit the LESes of (A, B), (X, B), and (X, A). The fourth
string is the triple sequence of interest. In this sequence, the composition of two arrows is
zero. That is clear in two of the three relevant cases because the composition factors through
a composition in one of the exact sequences by commutativity. The remaining composition
is trivial because we have the factorization

and the LES of (A,A) has the form

· · · → Hn(A)
id−−→ Hn(A)

0−→ Hn(A, A)
0−→ Hn−1(A)

id−−→ Hn−1(A) → · · ·

so that Hn(A, A) = 0. We conclude from the braid lemma that the triple sequence is exact.
Naturality follows from naturality of ∂∗ and functoriality of H∗. ��

The category Top• of pointed (hence nonempty) spaces has a zero object: The
one point space “•” whose only point also serves as base point. Our homology
theory H∗ restricts to a family of functors on Top•, taking the value H∗(X, x0) on
the pointed space (X, x0). We observe the welcome property that the zero object
(•, •) has zero homology H∗(•, •) = 0 in all degrees as is immediate from the LES
of the pair (•, •). When dealing with unpointed but exclusively nonempty spaces X,
it is often desirable to have a slight modification ˜H∗(X) of the absolute homology
H∗(X) that would behave similarly as homology relative to a point, so that we still
have ˜H∗(•) = 0. But ˜H∗ ought to be functorial so that no choices of base points are
allowed. Therefore we agree on the following definition.
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Definition 5.3
The reduced homology of a nonempty space X is given by

˜Hn(X) = ker(Hn(X) −→ Hn(•))

where Hn(X) → Hn(•) is induced by the unique map X → •.

To see that reduced homology is indeed a functor, we observe that every map
f : X → Y gives rise to a commutative triangle

so that Hn(f ) maps the kernel of the left arrow to the kernel of the right arrow and
we can define ˜Hn(f ) by the restriction of Hn(f ) to the kernel of the left arrow. It
then clearly remains true that ˜Hn(f ) = ˜Hn(g) if f � g and we see that ˜Hn(•) =
ker idHn(•) = 0 for all n ∈ Z. Consequently, we have ˜Hn(f ) = 0 for all n ∈ Z

if f : X → Y is null-homotopic (homotopic to a constant map) because in the
homotopy category HoTop, we obtain a factorization

To clarify the exact relationship between reduced and unreduced homology, let
us now pick a base point x0 ∈ X. We obtain the map j : (X,∅) → (X, x0) and the
retraction r : X → {x0}, so the LES of (X, x0) consists of split SESes

We saw in the proof of Lemma 3.18 that Hn(j) restricts to an isomorphism on
kerHn(r) = ˜Hn(X), so we obtain isomorphisms

˜Hn(X) ∼= Hn(X, x0) and Hn(X) ∼= ˜Hn(X) ⊕ Hn(•) (5.4)

for all n ∈ Z and these are natural with respect to pointed maps. If H∗ is ordinary,
the latter isomorphism takes the form
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{

H0(X) ∼= ˜H0(X) ⊕ H0(•),

Hn(X) ∼= ˜Hn(X) for n 
= 0

}

(5.5)

Now we are finally prepared to spell out the exact relationship between relative
homology and absolute homology of the collapse space as promised at the beginning
of this section.

Proposition 5.6
Let (X,A) be a cofibration. Then the collapse map

q : (X,A) −→ (X/A, A/A)

induces isomorphisms

H∗(X,A)
∼=−−→ H∗(X/A, A/A) ∼= ˜H∗(X/A)

Proof Recall from Example 1.39 that the mapping cone Ci of i : A ⊆ X is constructed out
of the mapping cylinder Mi by the pushout

where the left hand arrow is the inclusion into the end of the cylinder with coordinate one.
By Theorem 1.42 (ii), we thus have a homeomorphism Mi \ A ∼= Ci \ • and hence a
homeomorphism of pairs (Mi \ A, A × [0, 1)) ∼= (Ci \ •, CA \ •). The strong deformation
retraction H from Example 1.38 restricts to a strong deformation retraction on Mi \ A,
showing that (X, A) � (Mi \ A, A × [0, 1)). The collapse map q thus factorizes as

and the vertical arrows are homotopy equivalences, the right hand one being the comparison
map from Theorem 2.22 corresponding to the pushout (1.37) defining X/A. Applying the
functor H∗, we thus see that H∗(q) factorizes through isomorphisms by homotopy invariance
and excision. ��
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Note that the proposition remains true if A is empty in which case it asserts
H∗(X) ∼= ˜H∗(X

∐ •). In the next theorem, however, we have to assume A 
= ∅.

Theorem 5.7
Let (X,A) be a nonempty cofibration. We have a natural LES

Proof Pick a0 ∈ A and use (5.4) and Proposition 5.6 to replace relative homology in the
triple sequence of (X,A, a0) with reduced homology. ��

A pointed space (X, x0) is called well-pointed if (X, x0) is a cofibration. The
condition is fairly mild but recall Exercise 2.6 for a non-well-pointed space. If
(X, x0) is any pointed space and (Y, y0) is well-pointed, then Theorem 2.21 (i)
shows that (X∨Y, Y ) is a cofibration. The inclusion iY : Y → X∨Y has the collapse
map qY : X ∨ Y → X ∨ Y /X ∼= Y as a left inverse. Hence the splitting lemma
(Lemma 3.18) implies that the LES in reduced homology of (X ∨ Y,X) consists of
split SESes and the product maps ( ˜H∗(qX), ˜H∗(qY )) provide isomorphisms

˜H∗(X ∨ Y )
∼=−−→ ˜H∗(X) ⊕ ˜H∗(Y ) (5.8)

whose inverses are the coproduct maps ˜H∗(iX) ⊕ ˜H∗(iY ). Inductively, it follows
that reduced homology preserves finite coproducts in the category Topwell• of well-
pointed spaces. A little later (Theorem 5.31) we shall see that if H∗ satisfies the
dimension axiom, then ˜H∗ also preserves infinite coproducts in Topwell• .

Theorem 5.7 gives moreover rise to the so-called suspension isomorphism in
homology as we discuss next. The suspension of a space X is the space SX =
CX /X whereX ⊂ CX embeds by the base inclusion. Alternatively, the suspension
can be thought of as the pushout

so that the two cone tips form the “mounting points” of the suspension. For example
suspending the (n − 1)-sphere we obtain the n-sphere, S Sn−1 = Sn. The double
meaning of the letter “S” thus becomes a fortunate notational collision. To be more
rigorous, we have S Sn−1 = CSn−1/Sn−1, which can be canonically identified with
Dn/Sn−1. We then identify Dn/Sn−1 with Sn by means of the homeomorphism

un : Dn/Sn−1 ∼=−−→ Sn (5.9)

[(tx1, . . . , txn)] �−→ (ux1, . . . , uxn, 2t − 1)
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where t ∈ [0, 1], (x1, . . . , xn) ∈ Sn−1 and u = √

1 − (2t − 1)2. Geometrically,
this map sends rays from the center of the disk to meridians from the south pole
to the north pole. These remarks make the identification S Sn−1 = Sn precise. The
identification also holds for n = 0 noting that S−1 = ∅, thus CS−1 = • so that
SS−1 = S0 where we agree that u0 : D0/S−1 → S0 is the bijection sending the
additional base point in D0/∅ to the base point −1 ∈ S0. Suspension clearly defines
a functor S : Top → Top.

Theorem 5.10
We have a natural isomorphism ˜Hn+1(SX) ∼= ˜Hn(X) for every nonempty space X

and all n ∈ Z.

Proof We saw in Example 2.18 that (CX, X) is an NDR pair. The boundary maps in the
corresponding LES of Theorem 5.7 give the desired natural isomorphisms because CX is
contractible. ��

As an application, we obtain the homology of the spheres just from the axioms.

Corollary 5.11
We have Hk(D

n, Sn−1) ∼= ˜Hk(S
n) ∼= Hk−n(•) and hence

Hk(S
n) ∼= Hk−n(•) ⊕ Hk(•)

Assuming the dimension axiom, this gives

Hk(D
n, Sn−1) ∼=

{

H0(•) if k = n,

0 otherwise,
Hk(S

n) ∼=
{

H0(•) if k = 0 or k = n,

0 otherwise

Proof By Example 2.18, the pair (Dn, Sn−1) is an NDR, so Proposition 5.6 and the
homeomorphism in (5.9) show that Hk(D

n, Sn−1) ∼= ˜Hk(S
n). The suspension isomorphism

in Theorem 5.10 gives ˜Hk(S
n) ∼= ˜Hk−n(S0) ∼= Hk−n(•). ��

The suspension functor S has a reduced version � on Top• defined by collapsing
the arc x0 × I ⊂ SX of the base point. If (X, x0) is well-pointed, then the inclusion
x0 × I ⊂ SX is a cofibration (Exercise 5.2). Hence Corollary 2.25 shows that the
collapse map is a homotopy equivalence SX � �X, which is clearly natural for
pointed maps. Thus we also have a natural suspension isomorphism

˜Hn+1(�X) ∼= ˜Hn(X) (5.12)
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for well-pointed spaces. Reduced suspension is left adjoint to the loop space functor
� on Top• given by Ω(X, x0) = HomTop•((S

1, •), (X, x0)) with the compact open
topology and the constant loop as base point. The adjunction relation

HomTop•(�(X, x0), (Y, y0)) ∼= HomTop•((X, x0),�(Y, y0))

can be visualized as follows. Given a map f : �(X, x0) → (Y, y0) and a point
x ∈ X, we can restrict f to the arc x × I in �(X, x0) to obtain a loop in (Y, y0) and
thus a point in �(Y, y0). The adjunction descends to HoTop• where in the special
case (X, x0) = (Sn, •), it gives the natural isomorphism

πn+1(Y, y0) ∼= πn(�(Y, y0)) (5.13)

One may view the suspension isomorphism (5.12) and the “adjoint” loop space
isomorphism (5.13) as a first indication of the intricate interrelation of homology
and homotopy, giving an idea as to why the suspension and loop space constructions
become all the more important the farther one advances in the theory.

5.2 Simplicial and Singular Homology Agree

The purpose of this section is to show that singular and simplicial homology
coincide on �-complexes. For simplicity, we will drop the coefficient ring R

from our notation. So H
sing∗ (X,A) means H

sing∗ (X,A;R) and H�
n (X,A) means

H�
n (X,A;R). Since (�, ∂�n) and (Dn, Sn−1) are homeomorphic pairs, we just

saw in the last corollary that H
sing
n (�n, ∂�n) ∼= R is free of rank one. It is an

important additional information that the homology class of the relative cycle id�n

is a generator.

Proposition 5.14

We have H
sing
n (�n, ∂�n) ∼= R, generated by the class of id�n .

Proof This is clear for n = 0. Assuming the assertion for n − 1, we now argue that it also
holds true for n. Let � = (∂�n)\[v1, . . . , vn] be the 0-th horn. Then

H
sing
n (�n, ∂�n) ∼= H

sing
n−1(∂�n, �) (5.15)

∼= ˜H
sing
n (∂�n/�) (5.16)

∼= ˜H
sing
n−1(�

n−1/∂�n−1) (5.17)

∼= H
sing
n−1(�

n−1, ∂�n−1) (5.18)
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Here (5.15) holds by the triple sequence of (�n, ∂�n, �), since (�n,�) � (�,�).
Step (5.16) holds by Proposition 5.6 because the horn � ⊂ �n is both a strong deformation
retract and the zero set of a continuous function to I , so it is a (trivial) cofibration by the char-
acterization in Theorem 2.15 (iii). Step (5.17) is true because the spaces are homeomorphic
and (5.18) follows again from Proposition 5.6 because (�n−1, ∂�n−1) ∼= (Dn−1, Sn−2)

is an NDR. The singular simplex id�n maps to the chain ∂n(id�n) along (5.15) which is
relatively homologous to the inclusion �n−1 → [v1, . . . , vn] of the 0-th face. Following the

remaining isomorphisms, it thus maps to id�n−1 , which generates H
sing
n−1(�

n−1, ∂�n−1) by

induction assumption. So the relative cycle id�n generates H
sing
n (�n, ∂�n). ��

Before we can conclude the equality of simplicial and singular homology from
this proposition, we need another diagram chase to obtain the following convenient
tool from homological algebra. You are once more strongly advised to do the chase
yourself and only look at the proof in case you get stuck.

Lemma 5.19 (Five Lemma)
Suppose the diagram

in R-mod has exact rows, where α is surjective, ε is injective, and β and δ are
isomorphisms. Then γ is an isomorphism, too.

Proof To see that γ is injective, let c ∈ ker γ . Then δ(k(c)) = k′(γ (c)) = k′(0) = 0 and
since δ is injective, we have k(c) = 0. By exactness of the upper row, there is b ∈ B with
j (b) = c. We have j ′(β(b)) = γ (j (b)) = γ (c) = 0 so that by exactness of the lower row, we
obtain a′ ∈ A′ with i′(a′) = β(b). Since α is surjective, there exists a ∈ A with α(a) = a′.
We compute β(i(a) − b) = i′(α(a)) − β(b) = 0. As β is injective, it follows that i(a) = b,
thus c = j (b) = j (i(a)) = 0 because im i = ker j .

To see that γ is surjective, let c′ ∈ C′. Since δ is surjective, there exists d ∈ D with δ(d) =
k′(c′). Since l′(k′(c′)) = 0 by exactness at D′, the commutativity of the right most square
gives ε(l(d)) = 0, so l(d) = 0 because ε is injective. Exactness at D provides an element
c ∈ C such that k(c) = d . We have k′(γ (c) − c′) = δ(k(c)) − k′(c′) = δ(d) − k′(c′) = 0,
so exactness at C′ gives an element b′ ∈ B ′ with j ′(b′) = γ (c) − c′. Since β is surjective,
there exists b ∈ B such that β(b) = b′. Using this, we finally obtain γ (c − j (b)) = γ (c) −
γ (j (b)) = γ (c) − j ′(β(b)) = γ (c) − j ′(b′) = γ (c) − γ (c) + c′ = c′. ��

Now let (X,A) be a �-pair. We have a canonical homomorphism

H�
n (X,A) −→ H

sing
n (X,A)
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induced by the chain map

C�
n (X,A) −→ C

sing
n (X,A) (5.20)

which views an n-simplex σn
α : �n → X in the �-complex X as a singular simplex.

Theorem 5.21
The homomorphisms H�

n (X,A) −→ H
sing
n (X, A) are isomorphisms for all n and all

�-pairs (X,A).

Proof First suppose that A = ∅. Let Xk ⊆ X be the k-skeleton of X consisting of all
simplices of dimension at most k. We obtain a commutative ladder of LESes

We show that the right vertical map is an isomorphism. For the underlying relative simplicial
chain complex we obtain

C�
n (Xk, Xk−1) ∼=

{

⊕

σk
α

Rσk
α if n = k,

0 otherwise

Therefore all differentials in the chain complex are zero so that the homology is equal to the
chain modules,

H�
n (Xk, Xk−1) ∼=

{

⊕

σk
α

Rσk
α if n = k,

0 otherwise

Let � = ∐

α σk
α be the unique map from the coproduct

∐

σk
α

�k to X through which each

σk
α factors. The map � becomes a homeomorphism after collapsing the boundaries of the

k-simplices as indicated in the diagram
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The pair (
∐

�k
α,

∐

∂�k
α) is an NDR and so is (Xk, Xk−1) by Theorem 2.21 (ii).

Indeed, property (iv) in the definition of �-complexes effects by Lemma A.1 that
(
∐

α �k
α)

∐

Xk−1 −→ Xk is an identification map, so

is a pushout square. It thus follows from Proposition 5.6 that H sing∗ (�) is an isomorphism in

relative homology. Additivity gives isomorphisms H
sing∗ (

∐

α �k
α) ∼= ⊕

α H
sing∗ (�k

α) and

H
sing∗ (

∐

α ∂�k
α) ∼= ⊕

α H
sing∗ (∂�k

α). Mapping the LES of the pair (
∐

α �k
α,

∐

α ∂�k
α)

to the direct sum over all α of the LESes of (�k
α, ∂�k

α), the five lemma thus gives us
isomorphisms

H
sing∗ (

∐

α �k
α,

∐

α ∂�k
α) ∼= ⊕

α H
sing∗ (�k

α, ∂�k
α)

and by Proposition 5.14 the summands are generated by id�k
α
. So the morphism

H�
n (Xk, Xk−1) −→ H

sing
n (Xk,Xk−1)

of free R-modules restricts to a bijection of generating sets whence is an isomorphism.
Therefore applying the five lemma to the commutative ladder above gives the step of an

induction showing H�
n (Xk) ∼= H

sing
n (Xk) for all k ≥ 0 where the beginning k = 0 is clear.

Since H�
n (X) ∼= H�

n (Xk) for k > n, we have

H�∗ (X) ∼= colimk H�∗ (Xk)

Using that a singular simplex σ : �n → X has compact image, one sees that every singular

n-chain in X already lies in some k-skeleton Xk . This implies that we also have H
sing∗ (X) ∼=

colimk H
sing∗ (Xk) from which we conclude

H�∗ (X) ∼= colimk H�∗ (Xk) ∼= colimk H
sing∗ (Xk) ∼= H

sing∗ (X)

The general case A 
= ∅ follows again from the five lemma. ��

Corollary 5.22
Suppose a pair of spaces (X,A) admits a �-pair structure with finitely many n-

simplices outside A and assume R is a principal ideal domain. Then H
sing
n (X,A; R)

is finitely presented.
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Proof Over a principal ideal domain, submodules of finite rank free modules are finite rank
free. By assumption we have that C�

n (X, A; R) is free of finite rank, thus so is the submodule
Z�

n (X, A; R) and so is the submoduleB�
n (X,A; R). The above theorem completes the proof.

��

Recall the definition of the chain map C�∗ (f ) for a simplicial map of simplicial

pairs f : (X,A) → (Y, B) given in Sect. 3.5. Since C
sing∗ (f ) is always given

by composing simplices with f , the chain map (5.20) is not natural in (X,A).
But one checks that the induced map in homology is. So the isomorphisms from
Theorem 5.21 are natural in the simplicial setting. More precisely, ifF : Simp(2) →
Top(2) is the forgetful functor, then the functors

H�
n ,H

sing
n ◦ F : Simp(2) → R-mod

are naturally isomorphic. By simplicial approximation (Theorem 3.22), it follows
that any continuous map f : (X,A) → (Y, B) of simplicial pairs induces a well-
defined morphism H�

n (X[r], A[r]) → H�
n (Y, B) on any fine enough barycentric

subdivision of X. If for an R-module M we define H�∗ (X,A;M) by the homology
of C�∗ (X,A;R) ⊗R M as in the case of singular homology, then Theorems 5.21
and naturality still hold for singular and simplicial homology with coefficients in
M . The proof of Corollary 5.22, however, only carries over if one requires that M is
finite rank free.

5.3 TheMayer–Vietoris Sequence

The Mayer–Vietoris sequence is to homology as van Kampen’s theorem is to the
fundamental group. It allows to work out the homology of a space by decomposing
it into smaller spaces with known homology. Such a decomposition can either be a
suitable cover by two subspaces or a homotopy pushout. In either case, we derive
yet another LES that under favorable circumstances computes the homology of the
space from the homology of its pieces. Still (H∗, ∂∗) denotes a homology theory
with values in R-mod.

Definition 5.23
Let X be the union of two subspaces X1, X2 ⊆ X. Then we call (X; X1, X2) an excisive
triad if the inclusion (X1, X1 ∩ X2) → (X, X2) induces isomorphisms Hn(X1, X1 ∩
X2)

∼=−→ Hn(X, X2) for all n ∈ Z.

It turns out that a triad (X;X1, X2) is excisive if and only if (X;X2, X1) is
excisive, but this is not completely trivial and involves some diagram chasing [29,
Proposition 10.7.1]. If X1 and X2 are open, then (X;X1, X2) is excisive by the
excision axiom applied to the subspaces A = X\X1 and Y = X2.
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Theorem 5.24 (Mayer–Vietoris Sequence)
Let (X; X1, X2) be an excisive triad and let A ⊆ X1 ∩X2 =: X0 be a subspace. Then
we have a natural LES

→ Hn(X0, A)
(Hn(i1),Hn(i2))−−−−−−−−−−→ Hn(X1, A)⊕Hn(X2, A)

Hn(j1)−Hn(j2)−−−−−−−−−−→ Hn(X, A)
∂−→

where ik : (X0, A) → (Xk,A) and jk : (Xk, A) → (X, A) are the inclusions.

Proof The triples (X1, X0, A) and (X, X2, A) give rise to a commutative ladder

by naturality of the triple sequence. We define the morphism ∂ by the composition

Hn(X,A)
Hn(l2)−−−−→ Hn(X, X2)

∼=←−− Hn(X1, X0)
∂ ′
−→ Hn−1(X0, A)

appearing in the diagram. Naturality of the differential in the Mayer–Vietoris LES follows
then likewise from naturality of triple sequences and is clear for the other arrows. Exactness
is the usual diagram chasing:

Exactness at Hn(X0, A). Take an element z ∈ Hn(X0, A) with Hn(i1)(z) = 0. By
exactness, there exists z1 ∈ Hn+1(X1, X0) with ∂ ′(z1) = z. If in addition Hn(i2)(z) = 0
holds, then viewing z1 as an element of Hn+1(X, X2) by the isomorphism, we have ∂ ′(z1) =
0 by commutativity, hence exactness in the lower sequence gives z2 ∈ Hn+1(X, A) with
Hn+1(l2)(z2) = z1, so ∂(z2) = ∂ ′(z1) = z. This shows ker(Hn(i1), Hn(i2)) ⊆ im ∂ .
Suppose z ∈ Hn(X0, A) has a preimage under ∂ . Then z also has a preimage under ∂ ′, so
Hn(i1)(z) = 0 by exactness of the upper sequence. Similarly, Hn(i2)(z) has a preimage
under ∂ ′ ◦ Hn(l2) but this composition is zero by exactness of the lower sequence whence
Hn(i2)(z) = 0. This shows im ∂ ⊆ ker(Hn(i1),Hn(i2)).

Exactness at Hn(X1, A) ⊕ Hn(X2, A). Suppose the pair (z1, z2) ∈ Hn(X1, A) ⊕
Hn(X2, A) satisfies Hn(j1)(z1) = Hn(j2)(z2). Then Hn(l1)(z1) maps under the isomor-
phism to Hn(l2)(Hn(j1)(z1)) = Hn(l2)(Hn(j2)(z2)) = 0 by exactness in the lower
sequence. Hence, there exists z ∈ Hn(X0, A) such that Hn(i1)(z) = z1. Moreover, we
have Hn(j2)(Hn(i2)(z) − z2) = Hn(j1)(Hn(i1)(z)) − Hn(j1)(z1) = 0. By exactness in the
lower sequence, there exists z3 ∈ Hn+1(X,X2) such that ∂

′(z3) = Hn(i2)(z) − z2. Viewing
z3 ∈ Hn+1(X1, X0) via the isomorphism, we have Hn(i1)(z − ∂ ′(z3)) = Hn(i1)(z) = z1
by exactness of the upper sequence. In addition, we have Hn(i2)(z − ∂ ′(z3)) = Hn(i2)(z) −
(Hn(i2)(z) − z2) = z2. This shows ker(Hn(j1) − Hn(j2)) ⊆ im(Hn(i1), Hn(i2)). The
reverse inclusion is immediate from commutativity of the first square in the above ladder.
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Exactness at Hn(X, A). For z1 ∈ Hn(X1, A) we have (∂ ◦ Hn(j1))(z1) = (∂ ′ ◦
Hn(l1))(z1) = 0 because the latter is a composition of two maps in a LES. Similarly,
(∂ ◦ Hn(j2))(z2) = 0 for z2 ∈ Hn(X2, A) because the composition involves a composition
of two arrows in a LES right away. Thus also every difference Hn(j1)(z1) − Hn(j2)(z2)

lies in ker ∂ . This shows im(Hn(j1) − Hn(j2)) ⊆ ker ∂ . Let z ∈ ker ∂ . Then Hn(l2)(z)

followed by the (reversed) isomorphism gives an element z1 ∈ ker ∂ ′ = imHn(l1).
Thus there is z2 ∈ Hn(X1, A) with Hn(l1)(z2) = z1. Let z3 = Hn(j1)(z2). Then
Hn(l2)(z − z3) = 0 because both z and z3 map to z1 under the reversed isomorphism.
Therefore by exactness z − z3 ∈ imHn(j2). Let z4 ∈ Hn(X2, A) be an element with
Hn(j2)(z4) = z − z3. Then (Hn(j1) − Hn(j2))(z2 ⊕ (−z4)) = z3 + (z − z3) = z. This
shows ker ∂ ⊆ im(Hn(j1) − Hn(j2)). ��

Theorem 5.25 (Mayer–Vietoris Sequence for Homotopy Pushouts)
Let

be a homotopy pushout. Then we have a natural LES

→ Hn(A)
(Hn(f1),Hn(f2))−−−−−−−−−−−→ Hn(X)⊕Hn(Y )

Hn(g1)−Hn(g2)−−−−−−−−−−→ Hn(Z)
∂−→ Hn−1(A) →

Proof From Sects. 2.3 and 2.4, we have a homotopy commutative diagram

(5.26)

in which all downward pointing arrows are homotopy equivalences. The upper square is the
pushout of an open cover, so the triad (Mf1,f2 ; M̊f1 , M̊f2) is excisive. Therefore the upper
row in the induced diagram
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is exact by the previous theorem. If one homotopy pushout maps to another to form a
homotopy commutative cube, we obtain an up to homotopy defined map of the double
mapping cylinders preserving the open covers. This shows naturality. ��

Recall from Sect. 2.3 that our main example of a homotopy pushout is a pushout

(5.27)

in Top where i is a cofibration. Then also j is a cofibration by Theorem 2.21 (i) so
that all front pointing arrows in diagram 5.26 are inclusions and the diagram com-
mutes strictly. Since the triad (Mf1,f2; M̊f1 , M̊f2) is excisive, also the pushout (5.27)
is excisive in the sense that the map f induces relative homology isomorphisms

Hn(X,A) ∼= Hn(Z, Y ) (5.28)

Using these, we can prove a relative version of the Mayer–Vietoris sequence for the
pushout (5.27).

Theorem 5.29
Consider the pushout (5.27) in which i (hence j ) is a cofibration. Let B ⊆ A and
B ′ ⊆ Y be subsets with f (B) ⊆ B ′. Then we have a natural LES

→ Hn(A, B)
(Hn(i),Hn(f ))−−−−−−−−−→ Hn(X, B) ⊕ Hn(Y,B ′) Hn(f )−Hn(j)−−−−−−−−−→ Hn(Z, B ′) → .

Proof Similarly as in the proof of Theorem 5.24, the boundary homomorphism ∂ is now
contained in the diagram

and exactness and naturality of the LES follow exactly as above. ��
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If X1 ∩ X2 is not empty in Theorem 5.24, we choose A = {x0} for some x0 ∈
X1 ∩ X2 and get the reduced Mayer–Vietoris LES for excisive triads

· · · −→ ˜Hn(X0)
( ˜Hn(i1), ˜Hn(i2))−−−−−−−−−→ ˜Hn(X1) ⊕ ˜Hn(X2)

˜Hn(j1)− ˜Hn(j2)−−−−−−−−−→ ˜Hn(X)
∂−→ · · ·

For a map f : (X;X1, X2) → (Y ;Y1, Y2) of excisive triads, we pick x0 ∈ X1 ∩ X2
and use y0 = f (x0) ∈ Y1∩Y2 to identify reduced homology with homology relative
to a point so that naturality in Theorem 5.24 and naturality of the isomorphism (5.4)
gives naturality of the reduced Mayer–Vietoris LES for excisive triads. Replacing
homology with reduced homology in the proof of Theorem 5.25, we thus also obtain
a natural reduced Mayer–Vietoris LES for homotopy pushouts

· · · −→ ˜Hn(A)
( ˜Hn(f1), ˜Hn(f2))−−−−−−−−−→ ˜Hn(X) ⊕ ˜Hn(Y )

˜Hn(g1)− ˜Hn(g2)−−−−−−−−−→ ˜Hn(Z)
∂−→ · · ·

Example 5.30 Let us see what happens if we apply the reduced Mayer–Vietoris sequence
to the homotopy pushout given by the cell attaching pushout in Top

from Example 1.40. Since ˜H∗(Dn) = 0 throughout, the sequence takes the form

→ ˜H∗(Sn−1)
˜H∗(f )−−−−→ ˜H∗(Y )

˜H∗(j)−−−−→ ˜H∗(Z)
∂−→ ˜H∗−1(S

n−1)
˜H∗−1(f )−−−−−→ ˜H∗−1(Y ) → .

We see that ˜Hk(j) is an isomorphism, meaning the k-th reduced homology of Y remains
unchanged when attaching an n-cell, if and only if ˜Hk(f ) is trivial and ˜Hk−1(f ) is injective.
If (H∗, ∂∗) satisfies the dimension axiom, this is automatic whenever k /∈ {n, n − 1}. Hence
attaching an n-cell only has an effect on ordinary homology in degree n and n − 1. Here
the relevant portion of the Mayer–Vietoris sequence says that the n-th homology can only
grow while the (n − 1)-st homology can only diminish when attaching an n-cell. In fact,
the n-th homology remains unchanged if and only if ˜Hn−1(f ) is injective and the (n − 1)-st
homology is unaffected if and only if ˜Hn−1(f ) is trivial. These are mutually exclusive options
(unless H0(•) = 0). Our observations are in accordance with the rough intuition that ordinary
homology “counts holes in a space”: The n-cell can introduce a new “(n + 1)-dimensional
hole,” which for example always happens if f is null-homotopic. On the other hand, the n-
cell can cover an n-dimensional hole if f attaches the cell along the (n − 1)-dimensional
“boundary” of the hole.

We conclude this section with the verification that additivity ofH∗ for topological
sums implies additivity of ˜H∗ for wedge sums.
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Theorem 5.31
Suppose that the homology theory (H∗, ∂∗) satisfies the additivity axiom and let
(Xi, xi)i∈I be any family of well-pointed spaces. Then the inclusions Xi → ∨

j∈I Xj

induce an isomorphism

⊕

i∈I

˜H∗(Xi)
∼= ˜H∗

⎛

⎝

∨

i∈I

Xi

⎞

⎠

Proof Combining the additivity axiom with the five lemma, we obtain

⊕

i∈I

˜Hi(Xi)
∼=

⊕

i∈I

H∗(Xi, xi)
∼= H∗

⎛

⎝

∐

i∈I

Xi,
∐

i∈I

{xi}
⎞

⎠

Since all (Xi, xi) are well-pointed, the left hand arrow of the pushout

is a cofibration, so the isomorphism in (5.28) gives

H∗

⎛

⎝

∐

i∈I

Xi,
∐

i∈I

{xi}
⎞

⎠ ∼= H∗

⎛

⎝

∨

i∈I

Xi, •
⎞

⎠ ∼= ˜H∗

⎛

⎝

∨

i∈I

Xi

⎞

⎠

��

Leopold Vietoris, born 1891 in Bad Radkersburg, was an Austrian mathe-
matician not only known for his contributions to topology but also for being a
supercentenarian. With a life span of 110 years and 309 days, he still remains
the oldest confirmed male Austrian that has ever lived [12]. Vietoris married
his first wife Klara Riccabona in 1928 [14]. The couple had six children, all of
them girls [27]. Klara died from childbed fever after giving birth to their sixth
daughter [28] in 1935. In 1936, Vietoris married Klara’s sister Maria [13].
Vietoris passed away in April 2002, only a few days after Maria’s death at the
age of 100 years and 249 days. He wrote his last article [31] on trigonometric
sums at the age of 103.
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5.4 Degree

According to our computation in Corollary 5.11, we have ˜H
sing
n (Sn;Z) ∼= Z.

Therefore the endomorphism ring of ˜H
sing
n (Sn;Z) is canonically isomorphic to Z so

that we can define an interesting invariant of self-maps f : Sn → Sn of the n-sphere.

Definition 5.32
The degree of a map f : Sn −→ Sn is the unique integer deg f ∈ Z such that
˜H
sing
n (f ;Z)(z) = deg f · z for all z ∈ ˜H

sing
n (Sn;Z).

A couple of observations on the degree of a map f : Sn −→ Sn are immediate:

• If f � g, then deg f = deg g.
• If f is null-homotopic, then deg f = 0 (hence deg f = 0 if f is not surjective).
• The composition of f, g : Sn → Sn satisfies deg(f ◦ g) = deg f · deg g.
• If f is a homotopy equivalence, then deg f = ±1.
• We have deg(idSn) = 1.

Not at all obvious is however the fact that multiplication with deg f also
describes the induced endomorphism for any other reduced homology theory.

Theorem 5.33
Let (H∗, ∂) be any homology theory with values in R-mod and let f : Sn → Sn be
any map. Then the endomorphism ˜Hn(f ) of ˜Hn(Sn) is given by multiplication with
the integer deg f .

This result will be key for a uniqueness theorem in the next chapter showing that
the Eilenberg–Steenrod axioms determine ordinary homology on a large class of
spaces. The proof of Theorem 5.33 will occupy the rest of this section though we
allow ourselves to include an amusing application along the way. So still let (H∗, ∂)

denote any homology theory with values in R-mod (ordinary or not).

Proposition 5.34
For n ≥ 0, let rn : Sn → Sn be the reflection through the coordinate plane
{xn+1 = 0} ⊂ R

n+1 so that rn(x1, . . . , xn+1) = (x0, . . . , xn, −xn+1). Then we
have ˜Hn(rn) = − id

˜Hn(Sn) and hence in particular deg rn = −1.

Proof We prove the proposition by induction on n. To begin, we note that r0 defines a map
of excisive triads

r0 : (S0; {−1}, {+1}) −→ (S0; {+1}, {−1})
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Consider the inclusions i−1 : {−1} → S0 and i+1 : {+1} → S0 as well as the unique map
s : {−1} → {+1}, which induces a canonical isomorphism σ = H0(s) from H0({−1}) to
H0({+1}). Naturality of the Mayer–Vietoris sequence in Theorem 5.24 yields a commutative
square of isomorphisms

with τ(a⊕b) = σ−1(b)⊕σ(a). Let D ⊆ H0({−1})⊕H0({+1}) be the diagonal submodule
consisting of all elements a ⊕ σ(a) for a ∈ H0({−1}). The upper isomorphism H0(i−1) −
H0(i+1) restricts to an isomorphism δ : D → ˜H0(S

0) on D whereas τ restricts to idD on D.
Thus ˜H0(r0) = (−δ) ◦ idD ◦ δ−1 = − id

˜H0(S
0).

For the induction step, let η : ˜Hn(S(Sn−1)) ∼= ˜Hn−1(S
n−1) be the natural suspension

isomorphism from Theorem 5.10. We identify rn = S(rn−1) to see that

˜Hn(rn) = ˜Hn(S(rn−1)) = η−1 ◦ ˜Hn−1(rn−1) ◦ η = η−1 ◦ (− id) ◦ η = − id

by induction assumption. ��

Note that any two reflections ofRn+1 along n-dimensional linear subspaces differ
by a rotation and thus are homotopic. So the reflection hyperplane in the above result
is as good as any other.

Theorem 5.35
For any map f : S2n → S2n, there is x ∈ S2n with f (x) = ±x.

Proof Otherwise there are homotopies idS2n �F f and f �G − idS2n given by

F(x, t) = (1 − t)x + tf (x)

‖(1 − t)x + tf (x)‖ ,

G(x, t) = (1 − t)f (x) + t (−x)

‖(1 − t)f (x) + t (−x)‖

hence idS2n � − idS2n . But − idS2n is the composition of the 2n + 1 reflections through
the 2n + 1 coordinate hyperplanes of R2n+1, hence 1 = deg(idS2n ) = deg(− idS2n ) =
(−1)2n+1 = −1, which is absurd. ��
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Theorem 5.36 (Hairy Ball Theorem)
A continuous tangential vector field on an even dimensional sphere has a zero: If
v : S2n → R

2n+1 satisfies 〈v(x), x〉 = 0 for all x ∈ S2n, then there is x0 ∈ S2n with
v(x0) = 0.

Proof If not, then f : S2n → S2n, x �→ v(x)
‖v(x)‖ has x0 ∈ S2n with f (x0) = ±x0, so

0 = 〈v(x0), x0〉
‖v(x0)‖ = 〈f (x0), x0〉 = 〈±x0, x0〉 = ±1

which again is absurd. ��

The theorem says that one cannot comb a hairy ball without leaving a cowlick.
Also, wind direction on earth at a fixed time is an example of a continuous tangential
vector field on S2. Thus at any time there exists a windless location on earth. In the
next proposition, consider the circle S1 as the complex numbers of modulus one.

Proposition 5.37
For k ∈ Z, the map fk : S1 → S1 given by fk(z) = zk satisfies ˜H1(fk) = k · id

˜H1(S
1)

and hence in particular deg fk = k.

Proof By means of complex conjugation, we write f−k(z) = fk(z) = r1(fk(z)), so
Proposition 5.34 enables us to assume k ≥ 0. Let Qk = {z ∈ S1 : zk = 1} be the set of
k-th roots of unity. Then the map fk factors as either of the outer compositions in the diagram

The vertical homeomorphism carries the circle in the bouquet S1/Qk parameterized by t �→
[e 2π it

k ] for t ∈ [j −1, j ] to the j -th copy of S1 in
∨k

i=1 S1 by the map t �→ e2π i(t−j+1). The
map gk is just defined as the composition so that the left part of the diagram commutes. The
map fk is induced from fk by the universal property of the quotient topology. For the collapse
map qj : ∨k

i=1 S1 → S1 that maps all but the j -th copy of S1 to the base point, we have
qj ◦gk � idS1 . Thus the composition of ˜H1(gk)with the product map of ˜H1(q1), . . . , ˜H1(qk)

is given by

( ˜H1(q1), . . . , ˜H1(qk)) ◦ ˜H1(gk) = (id
˜H1(S

1), . . . , id˜H1(S
1))
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Similarly, if ij : S1 → ∨k
i=1 S1 denotes the inclusion of the j -th copy of S1, we have

(
∨k

i=1 idS1) ◦ ij = idS1 . Thus the composition of the coproduct map of ˜H1(i1), . . . , ˜H1(ik)

with ˜H1(
∨k

i=1 idS1) is given by

˜H1(
∨k

i=1 idS1) ◦ ( ˜H1(i1) ⊕ · · · ⊕ ˜H1(ik)) = id
˜H1(S

1) ⊕ · · · ⊕ id
˜H1(S

1)

As we saw in (5.8), the product and coproduct maps appearing on the left of these equations
are mutually inverse. Hence we can insert their composition in between the composition
˜H1(fk) = ˜H1(

∨k
i=1 idS1) ◦ ˜H1(gk) so that Example 1.33 yields

˜H1(fk) = (id
˜H1(S

1) ⊕ · · · ⊕ id
˜H1(S

1)) ◦ (id
˜H1(S

1), . . . , id˜H1(S
1)) =

= id
˜H1(S

1) + · · · + id
˜H1(S

1) = k · id
˜H1(S

1) ��

The (n − 1)-fold suspension of fk is a map Sn−1(fk) : Sn → Sn, which by
naturality of the suspension isomorphism in Theorem 5.10 still has degree k. Hence
maps of arbitrary degree exist in all dimensions. The point is that degree is a
complete invariant of homotopy classes of self-maps of spheres: if deg f = deg g

for f, g : Sn → Sn, then f � g. The hard step in the proof is the following
proposition.

Proposition 5.38
Let f : Sn → Sn have deg f = 0. Then f is null-homotopic.

Proof We endow the n-sphere with a simplicial structure by fixing a homeomorphism
Sn ∼= ∂�n+1 =: K . By simplicial approximation (Theorem 3.22), the map f : K → K is
homotopic to a simplicial map on some iterated barycentric subdivision K[r] of the domain
K . Since degree is homotopy invariant, we can thus assume f : K[r] → K is simplicial to
begin with.

Fix a vertex v in the codomain K . Since K is the boundary of a simplex, v has a unique
opposing face τ . We consider a map � : (K,K\τ) −→ (K, v), which stretches τ over the
whole sphere K and maps the complement of the interior τ̊ to v. Thus � � idK and �

restricts to a homeomorphism �|̊τ
∼=−→ K\{v}. So we have f � g := � ◦ f and since f

is simplicial, the map g sends each simplex σ in K[r] either to v or it maps ∂σ to v and σ̊

homeomorphically to K \ {v}. In the former case, we call the simplex σ ordinary, in the
latter case we call it special. Thus g factors as

g : K[r] −→
∨

σ special

Sn

∨

σ gσ−−−−→ K



124 5 Homology: Computations and Applications

Fig. 5.1 By scaling, translating, rotating, and rescaling we can move a special simplex (white) to
an adjacent ordinary simplex. The shaded area is mapped to the base point throughout

Fig. 5.2 The embedding σ− ∪ σ+ ⊆ R
n+1. The first axis represents R, the second axis Rn. The

homotopy Ft equals h(t, y) = h(−t, y) constantly along horizontal lines in the area between −t

and t . Whenever (±t, y) lies outside σ− ∪ σ+, the horizontal line thus maps to v so that in the end
F1 is the constant map to v

with pointed homeomorphisms gσ : (Sn, •)
∼=−→ (K, v) for each special simplex σ . As in the

proof of Proposition 5.37, it follows that

deg g =
∑

σ special

deg(gσ ) (5.39)

with deg(gσ ) = ±1. The assumption deg = 0 effects that there are as many “+1”s as
“−1”s in this sum. By moves as indicated in Fig. 5.1 we can form “special pairs” (σ−, σ+)

of simplices sharing precisely one face and satisfying deg gσ− = −1 and deg gσ+ = 1.
Since the maps gσ± have opposite degree and come from simplicial homeomorphisms of n-
simplices, we can scale, rotate, and rescale one of the two maps to achieve that the two maps
are obtained from one another by reflection at the common face. We embed the union of the
two simplices σ−∪σ+ inRn+1 as indicated in Fig. 5.2 and extend g|σ−∪σ+ to h : Rn+1 → K

by setting h constantly equal to v outside σ− ∪ σ+. We then have h(−x, y) = h(x, y) for all
(x, y) ∈ R

n+1. The homotopy

F(x, y, t) =
{

h(x, y), |x| ≥ t

h(t, y), |x| ≤ t

}
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turns σ− and σ+ into ordinary simplices. By repeating this process we can cancel out all
special simplices, which shows that g, thus f , is null-homotopic. ��

Remark 5.40
The formula (5.39) computes the “global degree” as a sum of “local degrees.” As such,
it has a differential topological version. Let f : Sn → Sn be smooth and let q ∈ Sn be
a regular value with f −1(q) = {p1, . . . , pk}. Then

deg f =
k

∑

l=1

sgn det

(

∂fi

∂xj
(pl)

)

where the Jacobian ∂fi
∂xj

(pl) is computed with respect to charts around pl and q, which

are mapped to one another by rotations in the orientation preserving isometry group
SO(n + 1) of Sn. For a proof, see [4, Corollary 7.5, p. 192].

Now we are ready to prove that the notion of degree distinguishes all pointed
homotopy classes of pointed self-maps of spheres.

Theorem 5.41
Let n ≥ 1. Then the group πk(S

n, •) is trivial for 1 ≤ k < n and the map

deg : πn(Sn, •)
∼=−→ Z is an isomorphism of groups.

Proof For k < n, the group πk(S
n, •) is trivial because each map Sk → Sn is homotopic

to a non-surjective one by simplicial approximation. To see that deg is a homomorphism,
we recall from Sect. 2.5 that the product [f ] · [g] of [f ], [g] ∈ πn(Sn, •), interpreted as
homotopy classes of maps (Sn, •) → (Sn, •), is represented by

fg : Sn −→ Sn ∨ Sn f ∨g−−−−→ Sn

so that as before deg(fg) = deg f +deg g. The kernel of deg is trivial by Proposition 5.38. To
see surjectivity, either consider the reduced suspension �n−1fk for k ∈ Z or, even simpler,
just observe that deg(idSn) = 1 hits the generator. ��

For the passage back to unpointed homotopy, let us introduce the notation
[X, Y ] = HomHoTop(X, Y ) for unpointed homotopy classes of maps f : X → Y .

Corollary 5.42

For n ≥ 1, the map deg : [Sn, Sn] ∼=−−→ Z is a bijection.
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Proof Only for injectivity, we still need to argue that any given map f : Sn → Sn is
homotopic to a map f with f (•) = •. To do so, we observe that the rotation group SO(n+1)
is path connected and acts transitively on Sn. Hence we can pick a path r : I → SO(n + 1)
from the identity matrix to a rotation matrix that maps f (•) to •. Then rt ◦ f is a homotopy
from f to a map f as required. ��

Remark 5.43
More generally, the difference between pointed and unpointed homotopy classes of
maps can be described as follows. For pointed spaces (X, x0) and (Y, y0), set 〈X, Y 〉 =
HomHoTop•((X, x0), (Y, y0)). If (X, x0) is well-pointed, we can define a right action
of π1(Y, y0) on 〈X, Y 〉 by viewing a loop γ : (I, ∂I ) → (Y, y0) as a homotopy {x0}×
I → Y , which the HEP allows us to extend to a homotopy H : X×I → Y starting at a
given map f : (X, x0) → (Y, y0). So we can set f · [γ ] = H1. If Y is path connected,
the natural map 〈X, Y 〉 → [X, Y ] descends to a bijection 〈X, Y 〉/π1(Y, y0) ∼= [X, Y ]
on the orbit space, so 〈X, Y 〉 ∼= [X, Y ] if Y is simply connected. For X = S1, the
action is just the conjugation action on the fundamental group, which is trivial if also
Y = S1 because π1(S

1, y0) is abelian.

Proof of Theorem 5.33 Let f : Sn → Sn be any map and set k := deg f . By Proposi-

tion 5.37 and the natural suspension isomorphism from ˜H
sing∗ (S(−);Z) to ˜H

sing
∗−1(−;Z), we

have deg Sn−1(fk) = k. Hence Corollary 5.42 implies that f � Sn−1(fk). Proposition 5.37
and the natural isomorphism from ˜H∗(S(−)) to ˜H∗−1(−) also show that ˜Hn(Sn−1(fk)) =
k · id

˜Hn(Sn). Hence

˜Hn(f ) = ˜Hn(Sn−1(fk)) = k · id
˜Hn(Sn) = deg f · id

˜Hn(Sn)
��

5.5 Applications

Now that we have acquired a decent general knowledge on homology, the time is
ripe to harvest some fruits of our work. In this section, we will work with the easiest
homology theory we know: H∗(−) = H

sing∗ (−;Z/2) with values in Z/2-vect.

The Fundamental Theorem of Algebra

The funny thing about the fundamental theorem of algebra is that it has no entirely
algebraic proof. In fact, the complex numbers C are an analytic object, namely a
degree two extension of the field of real numbersR, which is constructed as a (metric
or order theoretic) completion of Q. This is why any proof of the fundamental
theorem of algebra requires some analytic or topological input. Of course, as
topologists, we prefer the latter.
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Theorem 5.44
Let p(z) = anzn + an−1z

n−1 + · · · + a0 be a polynomial with complex coefficients
and no zeros in C. Then p(z) is constant.

Proof For all t ∈ R, setting ft (z) = p(tz)
|p(tz)| defines a map ft : S1 → S1 because p(z) 
= 0

for all z ∈ C. Since Hs(z) = ft ((1 − s)z) is a null-homotopy of ft , we have deg(ft ) = 0.
Choose r0 > 0 so that |anzn| > |an−1z

n−1+· · ·+a0| for |z| = r0. Consider the homotopy of
polynomials ps(z) = anzn + s(an−1z

n−1+· · ·+a0) from which we obtain the homotopy of

maps gs : S1 → S1 given by gs(z) = ps(r0z)|ps(r0z)| . Then fr0 = g1 � g0. Hence 0 = deg fr0 =
deg g0 = deg(z �→ zn) = n. ��

Invariance of Dimension

It is conceivable that Euclidean spaces of different dimension should not be
homeomorphic. But the existence of space filling curves is an indication that this
might not be easy to prove. Yet homology is strong enough for this purpose.

Theorem 5.45
If Rn is homeomorphic to R

m, then n is equal to m.

Proof A homeomorphism f : Rn
∼=−→ R

m induces a homotopy equivalence

Sn−1 �−−→ R
n \ {0} ∼=−−→ R

m \ {f (0)} �−−→ Sm−1.

Thus ˜Hn−1(S
n−1) ∼= ˜Hn−1(S

m−1) whence n = m by Corollary 5.11. ��

Nonexistence of Retractions

Here is another example where homology proves that a map with certain properties
does not exist.

Theorem 5.46
The disk Dn does not retract onto its boundary Sn−1.
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Proof Let i : Sn−1 → Dn be the inclusion of the boundary. If r : Dn → Sn−1 is a retraction
so that r ◦ i = idSn−1 , then id

˜Hn−1(S
n−1) = ˜Hn−1(r)◦ ˜Hn−1(i) = 0 because ˜Hn−1(D

n) = 0

contradicting ˜Hn−1(S
n−1) ∼= Z/2. ��

The Brouwer Fixed Point Theorem

The next classical theorem in topology is a neat example of an existence theorem
proven by a nonexistence theorem. Fixed point theorems of this kind are relevant in
game theory where they can be used to prove the existence of equilibria.

Theorem 5.47
Every map f : Dn → Dn has a fixed point.

Proof For n = 0, there is nothing to prove. Otherwise, the condition f (x) 
= x for all x ∈ Dn

lets us define r : Dn → Sn−1 by sending x ∈ Dn to the intersection of the ray from f (x)

passing through x with Sn−1. Clearly r is continuous and restricts to the identity on Sn−1,
which contradicts the last theorem. ��

The Borsuk–Ulam Theorem

We now come to a more substantial application that unlike the preceding ones
is based on the intrinsic mechanism of singular homology. So still let H∗(−) =
H

sing∗ (−;Z/2) and for simplicity, we also use the notation C∗(−) = Csing(−;Z/2).

Theorem 5.48
For any map f : Sn → R

n, there is x ∈ Sn with f (x) = f (−x).

In addition to the calm points on Earth as a consequence of the hairy ball theorem,
the Borsuk–Ulam theorem gives a continuation of our topological weather forecast.
The case n = 1 implies that at each time and on each great circle on Earth, there
exist two antipodal points with the same temperature. The case n = 2 implies that
at each time, there exist two antipodal points on the surface of the Earth with the
same temperature and the same atmospheric pressure. The theorem is an immediate
consequence of the following result, known as the antipode theorem.

Theorem 5.49
Suppose the map g : Sn → Sm satisfies g(−x) = −g(x) for all x ∈ Sn. Then n ≤ m.
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To see that the antipode theorem implies the Borsuk–Ulam theorem, assume that
f : Sn → R

n is a map with f (x) 
= f (−x) for all x ∈ Sn. Then we can define a
map g : Sn → Sn−1 by setting

g(x) = f (x) − f (−x)

‖f (x) − f (−x)‖
so that g(−x) = −g(x) for all x ∈ Sn. This contradicts the antipode theorem.

Proof of Theorem 5.49 The group with two elements 〈 t | t2 〉 ∼= Z/2 acts on the k-sphere
Sk by the antipodal map t · x = −x. The orbit space can be identified with real projective k-

space and the quotient map Sk p−→ RP
k is the 2-sheeted universal covering map. By covering

theory, each singular p-simplex σ : �p → RP
k has precisely two lifts σ̄+, σ̄−, which the

generator t transforms into one another: we have t σ̄± = σ̄∓. Correspondingly, we obtain a
chain map

τ∗ : C∗(RPk) −→ C∗(Sk)

given by τ∗(σ ) = σ̄+ + σ̄−, which is called transfer and lies in the SES

(5.50)

of singular chain complexes with coefficients in the field Z/2. A map g : Sn → Sm with
g(−x) = −g(x) for all x ∈ Sn descends to a map ḡ : RPn → RP

m on the quotients. We
thus obtain a “map” of SESes of chain complexes

The right hand square commutes because the underlying square in Top commutes. To
understand why the left hand square commutes, consider the diagram

Let σ : �p → RP
n and let σ̄± be the unique two lifts of σ under pn. Then

pm ◦ (g ◦ σ̄±) = (pm ◦ g) ◦ σ̄± = (ḡ ◦ pn) ◦ σ̄± = ḡ ◦ (pn ◦ σ̄±) = ḡ ◦ σ

Thus g ◦ σ± are the two unique lifts of ḡ ◦ σ under pm.
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By the naturality statement in Theorem 4.4 we thus obtain a commuting ladder of LESes.
First we consider the lower LES of this ladder. It is clear that RPm has an m-dimensional
�-structure so that Hm+1(RP

m) = 0 follows from Theorem 5.21. Thus the LES looks like

Note that in homology, the composition of covering map and transfer is trivial:

Hm(τ∗) ◦ Hm(p) = idHm(Sm) +Hm(Sm ·t→ Sm, x �→ −x) = 2 · idHm(Sm) = 0

because we are working over Z/2. Since the LES says that Hm(τ∗) is injective, it thus follows
that Hm(p) = 0 so the upper right most arrow in the L.E.S is zero and Hm(τ∗) is in fact
an isomorphism. Since Hk(S

m) vanishes for 0 < k < m by Corollary 5.11, the boundary
homomorphisms Hk(RP

m) −→ Hk−1(RP
m) are isomorphisms at least whenever 1 < k ≤

m. But the final arrow of the LES is clearly an isomorphism because both Sm and RP
m are

path connected. So the preceding arrow is zero and hence alsoH1(RP
m) −→ H0(RP

m) is an
isomorphism. Since the same remarks apply for the upper LES, the square with the boundary
homomorphism of the ladder in case n ≥ m and 1 ≤ i ≤ m looks like

SinceH0(ḡ) is an isomorphism, the diagram says that so isHi(ḡ) for 1 ≤ i ≤ m by induction.
The last one of these, Hm(ḡ), sits also in the square

of the ladder. But for n > m, this is absurd because from Corollary 5.11, we have Hm(Sn) =
0 while Hm(Sm) ∼= Z/2. ��
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Karol Borsuk (1905 in Warsaw—1982 at the same place) was a Polish
mathematician known, among other achievements, to be the founder of shape
theory, a version of homotopy theory better behaved for pathological spaces,
like the Warsaw circle that he likewise discovered. One of his students was
Samuel Eilenberg who jointly with Saunders Mac Lane founded category
theory. During the German occupation of Warsaw, Borsuk developed the
dice game “Animal Husbandry” in 1943 and sold copies of them to support
his family [11]. It seemed that most of these copies were lost during the
Warsaw Uprising but in the 1990s an intact set was found and the game is
now available on the market under different names. Notably, the game uses
dodecahedra as 12-sided dice.

Stanisław Marcin Ulam (1909 Lwów, Poland, now Lviv, Ukraine—1984
Santa Fe, New Mexico) was a Polish–American mathematician with a par-
ticularly wide range of research interests. In his early years, he was part of the
“Lwów school of mathematics” known for studying fundamental problems in
point-set topology, set theory, and functional analysis during long hours in the
Scottish cafe in Lwów. Later he emigrated to the USAwhere in 1944 he joined
the secret Manhattan project in Los Alamos, New Mexico, which developed
the first nuclear weapons [30]. Modern thermonuclear weapons still employ
the Teller–Ulam design, which Ulam developed post World War–II in 1951
with Hungarian–American physicist Edward Teller. Ulam is also known for
discovering the Ulam spiral: Arraying the integers along a spiral, the prime
numbers astonishingly often occur along horizontal, diagonal, and vertical
lines. Such lines correspond to quadratic functions some of which were known
to oftentimes produce primes already by Euler, but the phenomenon still lacks
an encompassing explanation. Another outcome of the Manhattan project due
to Ulam is the Monte Carlo method of sampling with pseudo random numbers
to find numerical solutions for problems that would otherwise require unfea-
sible calculations. The idea has proven to be fruitful in a variety of areas, and
is for example still applied to derivative pricing in mathematical finance.

The Ham Sandwich Theorem

The Borsuk–Ulam theorem has the following beautiful corollary. It asserts that a
ham sandwich consisting of two layers of bread and one layer of ham—no matter
how they are shaped, no matter how they are positioned—can be cut with a single
straight slice of a knife such that each layer is cut into halves of the same size.
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Theorem 5.51
Let A1, . . . , , Am ⊆ R

m be Borel sets of finite Lebesgue measure λ(Ai) < ∞ for all
i. Then there exists an affine hyperplane in R

m, which dissects each Ai into subsets of
equal measure.

Proof We embed R
m affinely as Rm × {1} ⊆ R

m+1. Given x ∈ R
m+1 \ {0}, set

• H+
x = {y ∈ R

m+1 : 〈x, y〉 ≥ 0} ∩ R
m × {1},

• H−
x = {y ∈ R

m+1 : 〈x, y〉 ≤ 0} ∩ R
m × {1},

• Hx = H+
x ∩ H−

x .

Let fi : Sm → R be given by fi(x) = λ(Ai ∩H+
x ). Then it is apparent that fi(−x) = λ(Ai ∩

H−
x ). Considering the product map f : Sm → R

m given by f (x) = (f1(x), . . . , fm(x)),
the theorem follows from the Borsuk–Ulam theorem once we know that f is continuous.
Given x ∈ Sm and a sequence (xn) of points in Sm with limn→∞ xn = x, the characteristic
functions χ

Ai∩H±
xn

converge pointwise to χ
Ai∩H±

x
, except possibly on Ai ∩ Hx . Thus they

converge λ-almost everywhere and they are bounded from above by the integrable function
χAi

. The dominated convergence theorem implies

lim
n→∞ fi(xn) = lim

n→∞

∫

χ
Ai∩H+

xn
dλ =

∫

χ
Ai∩H+

x
dλ = fi(x) ��

Exercises

5.1 Find a pair of spaces (X,A) such that H sing
1 (X,A;Z) is not isomorphic to the

reduced homology group ˜H
sing
1 (X/A;Z).

5.2 Let (X, x0) be a well-pointed space. Show that the arc inclusion x0×I ⊂ SX is
a cofibration. Hint: You may assume {x0} ⊆ X is closed. Find an NDR presentation
of X ×{0, 1}∪ {x0}× I ⊂ X × I and show that it descends to an NDR presentation
of x0 × I ⊂ SX. The general case works similarly with Strøm’s characterization of
cofibrations in [25, Lemma 4].

5.3 Let (H∗, ∂∗) be a homology theory with values in R-mod satisfying the
dimension axiom and H0(•) 
= 0. Let A ⊂ Sn be a proper subset. Show that
Hn(S

n,A) is not trivial.

5.4 Let (H∗, ∂∗) be a homology theory with values in R-mod satisfying the
dimension axiom.

(a) Apply the Mayer–Vietoris sequence for pushouts to compute Hk(S
n).

(b) Using the result for Hk(S
1), find the homology of the 2-torus Hk(T

2) again as
an application of the Mayer–Vietoris sequence for pushouts.
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5.5 Let (H∗, ∂∗) be a homology theory with values in R-mod. Show that we have
a natural isomorphism Hk(X × Sn) ∼= Hk(X) ⊕ Hk−n(X).

Hint: Let x0 ∈ Sn and show first that

Hk(X × Sn) ∼= Hk(X) ⊕ Hk(X × Sn,X × {x0}).

Afterwards, show that Hk(X × Sn,X × {x0}) ∼= Hk−n(X) with the help of the
Mayer–Vietoris sequence. You can either find a suitable excisive triad or you may
assume that X is locally compact and find a suitable pushout.

5.6 Suppose (H∗, ∂∗) satisfies the dimension axiom. Show that

Hk(T
n) ∼= H0(•)(

n
k).

5.7 For each n ≥ 1 find a surjective map Sn f→ Sn of degree zero.

5.8 Let fk : S1 → S1, z �→ zk . Show that deg(fk) = k also follows from
naturality of the Hurewicz isomorphism.

5.9 Show that for every map f : S2n → S2n, there is x ∈ S2n with f (x) ∈ {x,−x}.
Conclude that every map RP

2n → RP
2n has a fixed point. How about maps

RP
2n+1 → RP

2n+1?

5.10 Show that homeomorphic manifolds have equal dimension.
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In Example 5.30, we saw that the Mayer–Vietoris sequence gives us good control
on the effect on homology of attaching a cell to a space. Say a space X arises
entirely from attaching cells. This could mean that a sequence of nested subspaces
X0 ⊆ X1 ⊆ · · · ⊆ X forms an exhaustion X = ⋃

n Xn such that X0 is discrete
and such that Xn arises inductively from Xn−1 by attaching n-cells along attaching
maps f n

i : Sn−1 → Xn−1. By collapsing the complement of the interior of the j -th
attached (n − 1)-cell in Xn−1, we obtain a quotient map pj : Xn−1 → Sn−1. The
quotient maps corresponding to the (n − 1)-cells decompose the attaching maps f n

i

of the n-cells into families of maps f n
ij = pj ◦ fi : Sn−1 → Sn−1. The Mayer–

Vietoris sequence makes it now conceivable that at least for an ordinary homology
theory (H∗, ∂∗), the induced morphisms H̃n−1(f

n
ij ) for ranging n, i, and j contain

the complete information on the homology of X. By Theorem 5.33, this information
is in turn encoded in the integers deg f n

ij . So two remarkable consequences come to
mind. Firstly, there should be a combinatorial way of computing ordinary homology
from the numbers deg f n

ij . Secondly, these numbers are independent of (H∗, ∂∗), so
ordinary homology should be determined on cell complexes, or more precisely on
CW complexes, like our space X, by the Eilenberg–Steenrod axioms. Since many
spaces, including �-complexes and smooth manifolds, admit CW structures, one
could regard this fact as the ultimate justification of the axioms.

6.1 CW Complexes

To make the above ideas rigorous, we start with a formal introduction of the spaces
of interest in this chapter.

Definition 6.1
A CW complex consists of a topological space X and a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X
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by subspaces such that for each n ≥ 0, there exists a family of maps Qn
i
: Dn → Xn for

i ∈ In that restrict to maps qn
i

: Sn−1 → Xn such that:

(i) The square

(6.2)
is a pushout in Top.

(ii) We have X = colimn Xn in Top.

To verify that the definition does what we want it to do, let us decode it step by
step. For n = 0, condition (i) says that

is a pushout, which shows that the subspace X0 carries the discrete topology. For
n ≥ 1, the condition says that the n-skeletonXn is obtained from Xn−1 by attaching
copies of the n-disk Dn along attaching maps qn

i : Sn−1 → Xn−1 indexed by the
index set In. Theorem 1.42 (ii) implies that the inclusions jn : Xn−1 → Xn are
closed and that the path components of Xn \ Xn−1 are homeomorphic to open n-
disks. We call the path component en

i = Qn
i (D

n \ Sn−1) the i-th open n-cell of X,
and we refer to Qn

i as the characteristic map of the cell en
i .

Condition (ii) says that we have X = ⋃
n≥−1 Xn as a set and that X is coherent

with the skeleta Xn, meaning X carries the final topology with respect to the
inclusions in : Xn → X. Explicitly, a subset D ⊆ X is closed (or open) if and only
if D ∩ Xn ⊆ Xn is closed (or open) for all n. On the one hand, this is the maximal
choice of closed subsets, such that X is a cocone on the diagram of inclusions jn in
Top,
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meaning all inclusions in : Xn → X are still continuous. On the other hand,
universality requires that X have no less closed sets. If X′ equals X as a set but
has less closed sets as topological space, then id : X′ → X is no longer continuous,
violating the universal property, which requires that this arrow uniquely completes
the diagram

as a diagram in Top. Since the inclusions jn : Xn−1 → Xn are closed, so are the
inclusions in : Xn → X.

We stress that while the filtration (Xn)∞n=−1 is part of the structure of a CW
complex, the characteristic maps, or equivalently the pushouts in (i), are not. Only
their existence is required. In more detail, this still means that the families of
open n-cells {en

i }i∈In are part of the structure as they are the path components
of Xn \ Xn−1. Hence we can describe the index sets as In = π0(X

n \ Xn−1).
But the characteristic maps Qn

i and their restrictions to gluing maps qn
i are only

available after an arbitrary choice. Accordingly, the notion of morphisms of CW
complexes and the construction of functors from the category of CW complexes
must be independent of any such choice. Let us check that CW complexes have a
good point-set topology.

Theorem 6.3
CW complexes are T4 spaces (normal and Hausdorff).

Proof Recall that a space is called normal if any two disjoint closed subsets have disjoint
open neighborhoods. Hence it is enough to show that a CW complex X is normal and T1,
meaning points are closed. To see the latter, let x0 ∈ X and let m be minimal with x0 ∈ Xm.
Choosing an attaching pushout, we obtain a quotient map qm : (

∐
i∈Im

Dm)
∐

Xm−1 −→
Xm and q−1

m (x0) is a single interior point in some copy of Dm, hence closed. Thus x0 is
closed in Xm by Lemma A.1, hence closed in Xn for n ≥ m because the maps jn : Xn−1 →
Xn are closed inclusions. By the description of the final topology on X above, x0 is closed in
X.

To see that X is normal, we first show by induction that each skeleton Xn is normal. The
empty space X−1 is normal because ∅,∅ ⊆ X−1 are separated by ∅, ∅ ⊆ X−1. In view of
condition (i) in the definition of CW complexes, it is now enough to see that for a pushout



138 6 Cellular Homology

in Top with a closed embedding i, we have that Z is normal if A, B, and C are normal.
To prove this, we use the Tietze extension characterization of normality. So let D ⊆ Z be

closed, and let g : D → R be continuous. Then we have closed subsets DB = f
−1

(D) and
DC = j−1(D) of B and C, respectively. The restriction of g ◦ j to DC extends to a map
gC : C → R because C is normal. The set i(A) ∪ DB is closed in B and carries the pushout
topology of i(A) ← i(A) ∩ DB → DB . Since i is an embedding, sending i(a) ∈ i(A) to
gC(f (a)) and x ∈ DB to g(f (x)) gives a well-defined and continuous map i(A)∪DB → R,
which by normality of B extends to gB : B → R. Finally, gB and gC form a cocone on the
above pushout, so they define a map gZ : Z → R that extends g.

Now let A ⊆ X = colimn Xn be closed, and let g : A → R be continuous. We obtain
closed subsets An := A ∩ Xn of the normal space Xn, and, arguing inductively as above,
we find compatible extensions gn : Xn → R of g|An

so that gn|Xn−1 = gn−1. Hence the gn

form a cocone on X−1 → X0 → X1 → X2 → · · ·, and we get a unique map g∞ : X → R

extending g as required. ��

Since compact subsets of Hausdorff spaces are closed, we conclude that the
closed n-cells en

i = Qn
i (D

n) are indeed the closures of the open cells en
i in X.

Theorem 6.4
Let X be a CW complex, and let C ⊆ X be any subset.

(i) The set C is closed if and only if C ∩ en
i
is compact for each closed cell en

i
.

(ii) The set C is compact if and only if C is closed and meets only finitely many open
cells en

i
.

Proof If C ⊆ X is closed, then C ∩ en
i

is a closed subset of the compact set en
i

, hence is

compact. So let conversely C∩en
i

be compact for each closed cell en
i

. Trivially, C∩X−1 = ∅
is closed. For given n ≥ 0, we choose a pushout as in (6.2). By Lemma 1.35, the map
(
∐

Qn
i
)
∐

jn : (
∐

i∈In
Dn)

∐
Xn−1 −→ Xn is an identification map. To see that C ∩ Xn is

closed, it is by Lemma A.1 enough to show that j−1
n (C ∩ Xn) = C ∩ Xn−1 is closed, which

is true by induction hypothesis, and that (
∐

Qn
i
)−1(C ∩ Xn) is closed, which is true because

C∩Qn
i
(Dn) = C∩en

i
is closed by assumption, being a compact subset of a Hausdorff space.

So C ∩ Xn ⊆ Xn is closed for all n, hence C ⊆ X is closed, which proves (i).
If C is closed and lies in the union of finitely many open cells, it also lies in the union of the

closures of these cells and hence is a closed subset of a compact space, hence C is compact.
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Conversely, let C ⊆ X be compact. Then C is closed because X is Hausdorff by Theorem 6.3.
Suppose that C was not contained in any skeleton of X. Then we can find an infinite subset
D ⊆ C consisting of points lying in open cells of pairwise different dimension. Then every
subset of D has finite intersection with every skeleton Xn. In particular, every subset of D is
closed. This shows that the subset D ⊆ C is infinite, closed, and discrete, contradicting that
C is compact. Hence we must have C ⊆ Xn for some n. Suppose that C met infinitely many
open cells. Then there is k ≤ n and an infinite subset D ⊆ C such that each point in D lies in
a different open k-cell. Then for l ≤ k, the intersection of every subset of D with each closed
l-cell either is empty or consists of a single point, hence is compact. By (i), this shows that D

is an infinite, discrete, and closed subset of the compact space C ∩ Xk , which is absurd. This
proves (ii). ��

The theorem explains the term “CW complex.” The “C” refers to “closure-finite,”
meaning each closed cell en

i meets only a finite number of other cells. The “W”
refers to “weak topology” because a CW complex carries a weak topology in the
sense that one can already inspect on skeleta whether a given subset is open or
closed. From the theorem, it is immediate that a subset C ⊆ X is compact if and
only if C is closed and lies in a finite subcomplex. In particular, a CW complex X is
compact if and only if it is finite. To have a pile of examples of CW complexes, let
us endow those manifolds that are typically of interest in algebraic topology with
explicit CW structures.

Example 6.5 The n-sphere X = Sn has a CW structure with only one 0-cell and one n-cell.
So the filtration is X−1 = ∅, X0 = X1 = X2 = · · · = Xn−1 = {•}, and Xn = Sn and there
is only one possible choice of pushouts given by:

for k = 1, . . . , n − 1 and by:

for k = n.

Example 6.6 The orientable surface X = �g of genus g has a CW structure with one
0-cell, 2g many 1-cells, and one 2-cell. The filtration is given by X−1 = ∅, X0 = {•},
X1 = ∨

2g S1, and X2 = X. The only pushout of interest is the one attaching the 2-cell
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which was described in Example 2.29.

Example 6.7 Real projective d-space X = RP
d has a CW structure with one cell in each

degree from zero to d . The filtration can be given in homogeneous coordinates as Xn = {[x0 :
· · · : xn : 0 : · · · : 0] ∈ RP

d } ∼= RP
n and the cells are attached by:

with qn(x1, . . . , xn) = [x1 : · · · : xn], which is the 2-fold covering map and
Qn(x1, . . . , xn) = [x1 : · · · : xn,

√
1 − ‖(x1, . . . , xn)‖2], which is the orthogonal projection

from the n-disk to the upper hemisphere of the n-sphere followed by the 2-fold covering
map.

Example 6.8 Complex projective d-space X = CP
d has one 2n-cell in each even degree

0 ≤ 2n ≤ 2d . The filtration can again be described in homogeneous coordinates as X2n =
X2n+1 = {[z1, . . . , zn, 0, . . . , 0] ∈ CP

d } ∼= CP
n. The cells are attached by

As above, gluing and attaching maps are given by:

q2n(z1, . . . , zn) = [z1 : · · · : zn]

Q2n(z1, . . . , zn) = [z1 : · · · , zn :
√

1 − ‖(z1, . . . , zn)‖2].

Remark 6.9

The gluing map S3 q4

−→ CP
1 ∼= S2 of the 4-cell in the above CW structure of the

complex projective plane CP
2 is the famous Hopf bundle generating π3(S2, •) =

〈[q4]〉 ∼= Z. A visualization of this map has made it to the title page of Hatcher’s book
[8].
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It is convenient to have the notion of a relative CW complex (X,A) available,
which should be a space X that arises from a given space A by attaching cells. In
view of Theorem 6.3, we would like to preserve at least the Hausdorff property for
this concept so that we define a relative CW complex (X,A) by allowing X−1 = A

instead of only X−1 = ∅ in the definition of CW complexes but we require that the
space A be Hausdorff. The categories CW and relCW of CW complexes and relative
CW complexes are defined by the following notion of morphisms.

Definition 6.10
A map f : (X,A) → (Y, B) of relative CW complexes is cellular if f (Xn) ⊆ Yn for all
n ≥ −1.

Also of interest is the notion of a CW pair (X,A) consisting of an (absolute)
CW complex X and a subcomplex A ⊆ X: a closed union of open cells.

Lemma 6.11
A subcomplex A ⊆ X of a CW complex is a CW complex.

Proof We claim that An := A ∩ Xn is a filtration by closed subsets that defines a CW
structure on A. Choose pushouts for X, and let In(A) ⊆ In be the subset indexing the n-
cells in A. Then (

∐
i∈In(A) Qn

i
)
∐

(jn|A∩Xn−1 ) is a quotient map because (
∐

i∈In
Qn

i
)
∐

jn
is a quotient map and because A is closed. This gives Condition (i). Condition (ii) follows
because A being closed implies C ⊆ A ∩ Xn is closed if and only if C is closed in Xn. ��

Morphisms f : (X,A) → (Y, B) of CW pairs are cellular maps f : X → Y

with f (A) ⊆ B. Thus f restricts to a cellular map f |A : A → B. We will denote
the category of CW pairs by CW(2). Since subcomplexes are CW complexes by
the lemma and CW complexes are Hausdorff by Theorem 6.3, we have a functor
CW(2) → relCW, which sends the filtration (Xn)∞n=−1 to (Xn ∪ A)∞n=−1. In this
sense, we may consider a CW pair as a special type of relative CW complex.

Definition 6.12
Let (X,A) be a relative CW complex. We say that (X, A) has dimension n and write
dim(X, A) = n if X = Xn and X �= Xn−1. We say (X, A) has finite type if it has
finitely many cells in each degree. We say that (X, A) is finite, if it has finitely many cells
altogether.

Given a CW pair (X,A) with A �= ∅, it is sometimes useful to use the term
relatively finite and the like when the definition is applied to (X,A) and absolutely
finite when it is applied to (X,∅). Note that finite implies finite dimensional but not
conversely. If (X,A) is finite dimensional, it might not even have finite type. Let us
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briefly explain how to obtain new CW complexes out of old. We observe that if X

and Y are (relative) CW complexes, then clearly so is the coproduct X
∐

Y . For the
product, however, we need a point-set topological condition.

Theorem 6.13
Suppose that one of the CW complexes X and Y is locally compact. Then the product
space X × Y is a CW complex with filtration

(X × Y )n =
⋃

p+q=n

Xp × Yq .

Proof Every open n-cell in X × Y is the product e
X,n
p × e

Y,n
q of an open p-cell in X

and an open q-cell in Y with p + q = n. One finds a corresponding characteristic map
using a homeomorphism Dn ∼= Dp × Dq . The subtlety in need of attention concerns the
topology. Unifying all characteristic maps of X and Y to maps

∐
n≥0

∐
i∈IX

n
Q

X,n
i

and
∐

n≥0
∐

i∈IY
n

Q
Y,n
i

, these maps are by assumption identification maps

(
∐

n≥0
∐

i∈IX
n

Dn) −→ X, (
∐

n≥0
∐

i∈IY
n

Dn) −→ Y

and we have to show that so is their product. Without loss of generality, we may assume X is
locally compact. Since the product map can be factored as

(
∐

n,i

Q
X,n
i

)

×
(

∐

n,i

Q
Y,n
i

)

=
(

∐

n,i

Q
X,n
i

× id∐

n,i

Dn

)

◦
(

idX × ∐

n,i

Q
Y,n
i

)

,

it is an identification map because it is the composition of two identification maps according
to Proposition A.2 (ii). ��

Note that the above filtration (X × Y )n also in general defines a CW structure
on X × Y , but the corresponding coherent topology might be finer (have more open
sets) than the product topology of X × Y .

If X is a CW complex and A ⊆ X is a subcomplex, then X/A and hence the
cone CX, the suspension SX, and the reduced suspension �X are CW complexes.

If Y
p−→ X is a covering of a CW complex X, then Yn = p−1(Xn) defines the

filtration of a CW structure on Y (Exercises 6.1, 6.2 and 6.3). The key reason why
CW complexes are homotopy theoretically well-behaved is the following theorem.

Theorem 6.14
A relative CW complex (X, A) is a closed cofibration.



6.1 CW Complexes 143

Proof The argument from below Definition 6.1 showing that the inclusions of skeleta
in : Xn → X are closed still applies to relative CW complexes so that X−1 = A ⊆ X is
closed. Applying Theorem 2.21 to a choice of cell attaching pushouts as in Definition 6.1 (i),
we see that the inclusions j : Xn−1 → Xn are cofibrations. Since X−1 = A and
since trivially the composition of cofibrations are cofibrations, we obtain that (Xn, A) is a
cofibration for all n ≥ −1.

Let i : A → X be the inclusion, let H : A × I → Y be a homotopy, and let f : X → Y

be an initial condition so that f ◦ i = H0. Then inductively, the HEP of the cofibration
(Xn, A) applied to the initial condition f ◦ in gives an extension H ′ n : Xn × I → Y of
the homotopy H ′ n−1 : Xn−1 × I → Y with H ′−1 = H . Since I is compact, we have
colimn(Xn × I ) = X × I by Proposition 1.44. So we get a unique map H ′ : X × I → Y

extending all the maps H ′ n for n ≥ −1. In particular H ′ restricts to H on A×I and H ′
0 = f .

This shows the HEP of i for any Y . ��

Consequently, the LES of Theorem 5.7 applies to nonempty relative CW
complexes and in particular to nonempty CW pairs. Moreover:

Corollary 6.15
Let X be a nonempty CW complex, and let x0 ∈ X0 be a 0-cell. Then (X, x0) is
well-pointed.

Combining the theorem with Corollary 2.25 gives the following.

Corollary 6.16
Let X be a CW complex, and let A ⊆ X be a contractible subcomplex. Then X is
homotopy equivalent to X/A.

Here is a convenient application of this fact.

Corollary 6.17
Let X be a path connected CW complex. Then X is homotopy equivalent to a CW
complex with a single 0-cell.

Proof As the attaching maps of n-cells for n ≥ 2 have path connected image, already the 1-
skeleton X1 must be path connected. The 1-skeleton X1 is a graph, which by Zorn’s lemma
has a maximal subtree T ⊆ X1. Since T is a contractible subcomplex of X, the collapse
space X/T is a CW complex, which does the job. ��
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This shows that the assumption in the following description of the fundamental
group of a path connected CW complex comes with no loss of generality.

Theorem 6.18
Let X be a path connected CW complex with a single 0-cell x0. Choose characteristic
maps (Qn

i
, qn

i
) : (Dn, Sn−1) −→ (Xn, Xn−1) for i ∈ In and n = 1, 2. Then

π1(X, x0) ∼=
〈
[Q1

i
], i ∈ I1

∣
∣ [q2

j
], j ∈ I2

〉
.

In this presentation of the group π1(X, x0), it is understood that Q1
i and q2

j are

precomposed with the maps I → D1, t �→ 2t − 1 and I → S1, t �→ exp(2π it),
respectively, so that they define generators and relators in the free group π1(X

1, x0).

Proof The homomorphisms π1(in) : π1(Xn, x0) → π1(X, x0) form a cocone on the
diagram π1(X1, x0) → π1(X2, x0) → · · ·, and we claim that the corresponding unique
homomorphism colimn π1(Xn, x0) → π1(X, x0) is an isomorphism. To see it is surjective,
let [γ ] ∈ π1(X, x0). Then γ (I ) ⊆ X is compact, hence lies in a finite subcomplex by
Theorem 6.4 (ii), so γ (I ) ⊆ Xn for a large enough n, hence [γ ] ∈ im π1(in). To see
injectivity, let [γ ] ∈ π1(Xn, x0) for some n and let H : I × I → X be a null-homotopy
of γ in X. Then also H has compact image, so H(I × I ) ⊆ Xm for large enough m ≥ n,
which shows [γ ] is already trivial in π1(Xm, x0).

Again using that for [γ ] ∈ π1(Xn, x0), the image γ (I ) is contained in a finite subcomplex
of Xn, we conclude from Theorem 2.28(i) that π1(Xn−1, x0) ∼= π1(Xn, x0) for n ≥ 3.
Hence π1(X, x0) ∼= colimn π1(Xn, x0) ∼= π1(X2, x0). Lastly, x0 ∈ X2 being the only 0-
cell in X2 means X2 is constructed just like a presentation complex and we conclude as in
Theorem 2.30. ��

Finally, let us discuss gluings of CW complexes and the effect on fundamental
group and homology. The input of a gluing is a CW pair (X,A) and a cellular map
f : A → Y from the subcomplex A to another CW complex Y as gluing map. The
output of the gluing is the space Z in the pushout square

in Top. It is a CW complex endowed with the filtration Zn = f (Xn) ∪ j (Y n). The
set of n-cells of Z consists of the n-cells of Y and those n-cells of X that do not
lie in A. Composing corresponding characteristic maps with j and f , respectively,
gives characteristic maps for Z, and we have

colimn Zn = colimn((f
∐

j)(Xn
∐

Yn)) = (f
∐

j)(colimn(X
n
∐

Yn)) =
= (f

∐
j)(X

∐
Y ) = Z
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because f
∐

j is an identification map. We call the above pushout a cellular
pushout. In a cellular pushout, also f is cellular and j : Y → Z is the inclusion
of a subcomplex by Theorem 1.42 (ii). Combining Theorems 6.14 and 2.27 shows
the fundamental group functor sends cellular pushouts to pushouts of groups.

Theorem 6.19 (van Kampen—CW Version)
Let

be a cellular pushout with nonempty path connected CW complexes A, X, and Y . Pick
a0 ∈ A and set x0 = i(a0), y0 = f (a0), z0 = f (i(ao)) = j (f (a0)). Then

is a pushout in Group.

Combining Theorems 6.14 and 5.29 shows that cellular pushouts give rise to a
LES in any homology theory (H∗, ∂∗).

Theorem 6.20 (Mayer–Vietoris Sequence for Cellular Pushouts)
Let

be a cellular pushout. Let B ⊆ A and B ′ ⊆ Y be subsets with f (B) ⊆ B ′. Then we
have a natural LES

→ Hn(A, B)
(Hn(i),Hn(f ))−−−−−−−−−→ Hn(X, B) ⊕ Hn(Y,B ′) Hn(f )−Hn(j)−−−−−−−−−→ Hn(Z, B ′) → .
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For nonempty A, we can again choose points for B and B ′ in the theorem to
obtain the reduced Mayer–Vietoris LES for cellular pushouts

· · · −→ H̃n(A)
(H̃n(f1), H̃n(f2))−−−−−−−−−→ H̃n(X) ⊕ H̃n(Y )

H̃n(g1)−H̃n(g2)−−−−−−−−−→ H̃n(Z)
∂−→ · · · .

We point out that the isomorphism (5.28) applies to cellular pushouts. So the two
CW pairs in a cellular pushout satisfy Hn(X,A) ∼= Hn(Z, Y ) for all n.

6.2 Cellular Homology and Euler Characteristic

In the first part of this section, we explain that ordinary homology of a CW complex
can be computed by means of a chain complex. To begin, we fix a homology theory
(H∗, ∂∗) with values in R-mod. Further assumptions on (H∗, ∂∗) are only in place
where stated.

Definition 6.21
Let (X, A) be a relative CW complex. The cellular chain complex CCW∗ (X,A; H∗)

associated with (H∗, ∂∗) has chain modules

CCW
n (X, A; H∗) := Hn(Xn, Xn−1)

and differentials

∂CW
n : CCW

n (X, A; H∗) −→ CCW
n−1(X,A; H∗)

given by the boundary homomorphisms

∂n : Hn(Xn, Xn−1) −→ Hn−1(Xn−1, Xn−2)

in the LES triple sequence of the triple (Xn, Xn−1, Xn−2) from Theorem 5.2. We denote
the homology of the chain complex (CCW∗ (X,A; H∗), ∂CW∗ ) by:

HCW∗ (X, A)

and call it the cellular homology of (X, A) associated with the theory (H∗, ∂∗).

The definition of boundary maps in the triple sequence gives a diagram
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so that the composition ∂CW
n−1 ◦ ∂CW

n factorizes through two arrows in a long exact
sequence, so it vanishes and (C∗(X,A;H∗), ∂CW∗ ) is indeed a chain complex. In the
case of an ordinary homology theory, it turns out that the homology of this chain
complex is the original homology of the space.

Theorem 6.22
Let (X, A) be a relative CW complex and assume that (H∗, ∂∗) satisfies the dimension
axiom. If (X, A) is infinite, we assume in addition that (H∗, ∂∗) is additive. Then there
are isomorphisms

Hn(X,A)
∼=−−→ HCW

n (X,A)

for all n ≥ 0 and these are natural with respect to cellular maps.

Proof Choose pushouts

Since the left hand vertical map is a cofibration, the isomorphism in (5.28), the five lemma
and additivity (if X is infinite), and Corollary 5.11 provide an isomorphism

Hk(X
n, Xn−1) ∼=

⊕

i∈In

Hk−n(•).

Since we assume that (H∗, ∂∗) satisfies the dimension axiom, this means

Hk(X
n, Xn−1) ∼=

{ ⊕
i∈In

H0(•) k = n

0 k �= n.
(6.23)

Considering the LES

of the triple (Xn,Xn−1, A), we get an isomorphism Hk(X
n−1, A)

∼=−→ Hk(X
n, A) whenever

k /∈ {n, n − 1} according to (6.23). Thus k > n implies

Hk(X
n, A) ∼= Hk(X

n−1, A) ∼= · · · ∼= Hk(X
−1, A) = Hk(A, A) = 0. (6.24)
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For k < n, we get Hk(X
n, A) ∼= Hk(X

m, A) for every m > n, hence Hk(X
n, A) ∼=

colimm Hk(X
m,A) for all k < n. Clearly, we have colimm Hk(X

m,A) ∼= Hk(X,A) if X

is finite dimensional. To prove that we have such an isomorphism also in the general case,
consider the homotopy colimit of the inclusions jn : Xn−1 → Xn, a model of which is given
by:

T (X•) =
(

∐

n≥−1
Xn × [0, 1]

)
/

(xn, 0) ∼ (jn+1(xn), 1).

Hence T (X•) is constructed by successively gluing the mapping tori M(jn) to an infinite
mapping telescope. The mapping telescope sits in the pushout square

and the input arrows are cofibrations as we saw in Section 2.3. By Theorem 5.29, additivity,
and the homotopy equivalence M(jn) � Xn relative A, we have a corresponding Mayer–
Vietoris sequence

⊕

n≥0

Hk(X
n, A) −→

⊕

n odd

Hk(X
n, A) ⊕

⊕

n even
Hk(X

n, A) −→ Hk(T (X•), A).

The first arrow maps the element z2n ∈ Hk(X
2n, A) to (Hk(j2n+1)(z2n), z2n) and the ele-

ment z2n−1 ∈ Hk(X
2n−1, A) to (z2n−1, Hk(j2n)(z2n−1)). In particular, this arrow is injec-

tive and has cokernel Hk(T (X•), A). Precomposing an arrow with an automorphism leaves
the cokernel unchanged, so we can precompose the first arrow with

⊕
n≥0(−1)n idHk(X

n,A)

to see that the cokernel is just the algebraic description of colimn Hk(X
n,A). Hence

colimn Hk(X
n,A) ∼= Hk(T (X•), A).

Finally, let us prove that T (X•) � X relative A. To see this, we endow the interval
[−1, ∞) with the CW structure whose 0-cells are at the integers. Then T (X•) is canonically
embedded as subcomplex in the product CW complex X×[−1, ∞), and we show it is a strong
deformation retract. Consider the subcomplex Yn = T (X•)∪ (X×[n,∞)) ⊆ X×[−1, ∞).
Since (X,Xn) is a CW pair, Theorems 6.14, 2.15, and Remark 2.17 show that X × I

strongly deformation retracts onto X × {0} ∪ Xn × I . Therefore Yn strongly deformation
retracts to Yn+1. Performing the strong deformation retractions successively during the
time interval [1 − 2−n−1, 1 − 2−n−2], we obtain a strong deformation retraction from
X×[−1, ∞) onto T (X•). This strong deformation retraction is indeed continuous because it
is continuous when restricted to any skeleton of X × [−1, ∞). So (X,A) � (T (X•), A),
hence colimn Hk(X

n, A) ∼= Hk(X,A) and we have proven for a general relative CW
complex (X,A) and for k < n that



6.2 Cellular Homology and Euler Characteristic 149

Hk(X
n, A) ∼= Hk(X,A). (6.25)

Let us revisit the diagram from below Definition 6.21 with shifted degree

Since both Hn(Xn−1, A) and Hn−1(Xn−2, A) occurring in the triple sequences of
(Xn, Xn−1, A) and (Xn−1, Xn−2, A) vanish by (6.24), the arrows in and in−1 are injective,
as indicated. It turns out that the map in induces an isomorphism

coker(∂n+1)
∼=−−→ HCW

n (X, A) = ker ∂CW
n / im ∂CW

n+1 (6.26)

as we demonstrate by a diagram chase. First we have to show the induced map is well-
defined. This is true because for one thing, given z ∈ Hn(Xn, A) we have ∂CW

n (in(z)) =
in−1 ◦ (∂n ◦ in)(z) = 0 and for another, given z ∈ im ∂n+1 we have in(z) ∈ im(in ◦ ∂n+1) =
im ∂CW

n+1. To see injectivity, let z+ im ∂n+1 ∈ coker ∂n+1 with in(z) ∈ im ∂CW
n+1. Thus there is

z1 ∈ Hn+1(Xn+1, Xn) with ∂CW
n+1(z1) = in(z). Then in(∂n+1(z1)−z) = ∂CW

n+1(z1)−in(z) =
in(z) − in(z) = 0. Since in is injective, it follows that z = ∂n+1(z1) ∈ im ∂n+1, thus
z represents zero in coker ∂n+1. Surjectivity follows because given z ∈ ker ∂CW

n , we have
0 = ∂CW

n (z) = in−1(∂n(z)), hence ∂n(z) = 0 because in−1 is injective. But ker ∂n = im in
by exactness, so z has a preimage under in as desired.

The arrow ∂n+1 sits moreover in the long exact sequence

Hn+1(Xn+1, Xn)
∂n+1−−−→ Hn(Xn,A) −→ Hn(Xn+1, A) −→ Hn(Xn+1, Xn)

of the triple (Xn+1, Xn, A) and the rightmost Hn(Xn+1, Xn) vanishes by (6.23). Thus
coker(∂n+1) ∼= Hn(Xn+1, A), which is isomorphic to Hn(X,A) by (6.25). Combining this
with (6.26), we conclude Hn(X, A) ∼= HCW

n (X,A) and all isomorphisms were natural with
respect to cellular maps. ��

Similarly as in Corollary 5.22, we conclude that a topological finiteness condition
on a space implies an algebraic finiteness condition on homology.
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Corollary 6.27
Suppose that (H∗, ∂∗) satisfies the dimension axiom and that H0(•) is finite rank free
over a principal ideal domain R. Let (X,A) be a pair of spaces, which is homotopy
equivalent to a relatively finite relative CW complex. Then Hn(X, A) is a finitely
presented R-module for all n ≥ 0.

Proof In view of (6.23), the assumptions make sure that the cellular chain complex consists
of finite rank free R-modules and subquotients of these are finitely presented because R is a
principal ideal domain. ��

In the special case that (X,A) is actually a CW pair, a connecting boundary
homomorphism ∂CW

n : HCW
n (X,A) −→ HCW

n−1(A) results from the following
proposition by means of Theorem 4.4

Proposition 6.28
Let (X, A) be a CW pair. Then we have a natural split SES of cellular chain complexes

0 −→ CCW∗ (A; H∗) −→ CCW∗ (X;H∗) −→ CCW∗ (X,A; H∗) −→ 0.

Proof If A is empty, there is nothing to prove. Otherwise we argue as follows. The map
in : An/An−1 → Xn/Xn−1 is the inclusion of a subwedge of a wedge of n-spheres, so
(Xn/Xn−1, An/An−1) is a cofibration. Sending all spheres in Xn/Xn−1 outside An/An−1

to the base point while leaving spheres in An/An−1 untouched defines a retraction rn of in.
The canonical map from Xn/Xn−1 /

An/An−1 to Xn ∪A/Xn−1 ∪A is a homeomorphism.
Therefore the LES of Theorem 5.7 breaks up into split SESes

0 −→ H̃n(An/An−1) −→ H̃n(Xn/Xn−1) −→ H̃n(Xn ∪ A/Xn−1 ∪ A) −→ 0.

Proposition 5.6 identifies these SESes with

0 −→ CCW
n (A; H∗) −→ CCW

n (X;H∗) −→ CCW
n (X,A; H∗) −→ 0

using that inclusions of skeleta are cofibrations. Naturality of the boundary map ∂∗ in the
homology theory (H∗, ∂∗) shows that these SESes assemble to a SES of chain complexes
and all occurring identifications and sequences are natural with respect to cellular maps. ��

It is an established abuse of notation to use the symbol “∂n” for both chain
complex differentials and connecting boundary maps in long exact homology
sequences. Accordingly, also “∂CW

n ” has these two possible meanings by now. It
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should come as no surprise that the natural isomorphism Hn(X,A) ∼= HCW
n (X,A)

from Theorem 6.22 identifies the boundary map ∂n of the original homology theory
(H∗, ∂∗) with the connecting boundary map ∂CW

n .

Proposition 6.29
Let (X, A) be a CW pair, and assume that (H∗, ∂∗) satisfies the dimension axiom.
If (X,A) is infinite, assume additionally that (H∗, ∂∗) is additive. Then we have a
commutative diagram

Proof Naturality of the boundary map ∂n gives a commutative diagram

By the snake lemma, the connecting homomorphism ∂CW
n is induced by the zig zag path

starting at the left middle term, going down, going right, going down, and ending at the lower
right corner of the diagram. On the upper left, we can extend the diagram by the commutative
square
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which we found as part of the proof of Theorem 6.22 and in which coker ∂n+1 is the cokernel
of the triple sequence boundary map

∂n+1 : Hn+1(Xn+1 ∪ A, Xn ∪ A) −→ Hn(Xn ∪ A, A).

Similarly, on the right, we can extend the diagram by

where this time coker ∂n is the cokernel of the pair sequence boundary map

∂n : Hn(An, An−1) −→ Hn−1(An−1).

This extension of the diagram commutes because it is induced by an underlying commutative
diagram of pairs of spaces. Now the left extension, the zig zag path, the right extension,
and the upper boundary map in the fully extended diagram induce the desired commutative
square on the subquotients HCW

n (X,A) and HCW
n−1(A) of Hn(Xn ∪ A, Xn−1 ∪ A) and

Hn−1(An−1, An−2), respectively. ��

To conclude this section, we discuss what might be the most iconic concept of
algebraic topology: the Euler characteristic. The historic background is Euler’s
polyhedron formula, which asserts for every convex polyhedron that

χ = V − E + F = 2

where V , E, and F denote the number of vertices, edges, and faces of the
polyhedron, respectively. We can now give a vast generalization of this fact: we
define the Euler characteristic for any finite CW complex X, and we prove that it is
an invariant of the homotopy type of X.

Definition 6.30
Let X be a finite CW complex. The Euler characteristic of X is the integer

χ(X) =
∑

n≥0

(−1)n|π0(Xn \ Xn−1)|.
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So in words, the Euler characteristic is the alternating sum over the number of
cells in X. Let us define the n-th Betti number of a topological space X by bn(X) =
rankZ H

sing
n (X) ∈ {0, 1, 2, . . .}∪{∞} where as usual, the rank of an abelian group is

defined as the cardinality of a maximal linearly independent subset. So equivalently,
bn(X) = dimQ(H

sing
n (X)⊗ZQ) (and also equivalently bn(X) = dimQ H

sing
n (X;Q)

because the functor (−) ⊗Z Q is left and right exact).

Theorem 6.31 (Euler–Poincaré Formula)
Let X be a finite CW complex. Then

χ(X) =
∑

n≥0

(−1)nbn(X).

Proof Let us simply write C∗ = CCW∗ (X; H
sing∗ ) for the cellular chain complex of X. By

Theorem 6.22, we have to show that

∑

n≥0

(−1)n rankZ Cn =
∑

n≥0

(−1)n rankZ Hn(C∗). (6.32)

But this is a general fact for finite chain complexes of finitely generated abelian groups as we
will prove now. Consider the two SESes

0 −→ Bn −→ Zn −→ Hn(C∗) −→ 0,

0 −→ Zn −→ Cn
∂n−−→ Bn−1 −→ 0,

where as before Zn and Bn denote cycles and boundaries. Since rankZ is additive for SESes
(alternatively, since dimQ is additive after applying (−) ⊗Z Q), we obtain

rankZ Zn = rankZ Bn + rankZ Hn(C∗),

rankZ Cn = rankZ Zn + rankZ Bn−1.

Forming the alternating sum over the second equality, and replacing the term rankZ Zn by
means of the first inequality, the terms rankZ Bn cancel out in pairs so that we obtain the
asserted equality. ��

Corollary 6.33
Let X and Y be homotopy equivalent finite CW complexes. Then

χ(X) = χ(Y ).
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It can, for example, be challenging to decide whether a given topological space
is contractible. If the space admits a finite CW structure, as a first test, one can
choose any such finite CW structure and compute the Euler characteristic simply
by counting cells. If it is different from one, the space is not contractible. From the
CW structures given in Example 2.29, we see that χ(�g) = 2 − 2g and χ(Ng) =
2 − g for the orientable and nonorientable surface of genus g. Hence orientability
and Euler characteristic jointly distinguish all closed connected 2-manifolds. The
CW structure of the product X × Y of two finite CW complexes X and Y given in
Theorem 6.13 shows moreover that χ(X ×Y ) = χ(X)χ(Y ). In particular χ(Td) =
0 and more generally χ(S1 ×X) = 0 for any finite CW complex X. Similarly, for an
n-fold covering map Y → X of a finite CW complex X, we have χ(Y ) = n · χ(X)

in view of Exercise 6.3. This shows that a nonzero Euler characteristic obstructs
nontrivial self-coverings of a space. So unless g = 1, a covering map �g → �g

must be the identity map. In addition to the multiplicativity properties of the Euler
characteristic for products and coverings, the Euler characteristic is also additive in
the following sense.

Theorem 6.34
For a cellular pushout

with finite CW complexes X and Y , we have χ(Z) = χ(X) + χ(Y ) − χ(A).

Proof We consider the Mayer–Vietoris LES in Theorem 6.20 for singular homology as a
chain complex with trivial homology. Applying (6.32) to this chain complex gives

∑

n≥0

(−1)n rankZ Hn(Z) −
∑

n≥0

(−1)n(rankZ Hn(X) + rankZ Hn(Y ))+

+
∑

n≥0

(−1)n rankZ Hn(A) = 0

so that the theorem follows from the Euler–Poincaré formula. ��

With this inclusion–exclusion principle, the Euler characteristic of a space can
be computed successively by decomposing it into smaller parts.
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6.3 Computing Cellular Homology

We will now explain how to make the cellular chain complex explicit in terms of
degrees of self-maps of spheres induced by attaching maps. The homology of a CW
complex can then be computed algebraically as we already practiced in the case of
simplicial homology of �-complexes in Sects. 3.2 and 3.3, and again Lemma 3.9
provides an algorithmic way of doing it. For a given relative CW complex (X,A),
let us choose pushouts

Definition 6.35
For n ≥ 1, i ∈ In, and j ∈ In−1, we define the incidence number incn

i,j
∈ Z of the i-th

n-cell and the j -th (n − 1)-cell of (X, A) as the degree of the composition

Precomposing characteristic maps with reflections, we see that incidence num-
bers of relative CW complexes are only well-defined up to sign. We spell out that
for n = 1, the conventions on the homeomorphism u0 we agreed upon below (5.9)
have the effect that

inc1
i,j =

⎧
⎪⎨

⎪⎩

1 if q1
i (1) = Q0

j (D
0) and q1

i (−1) �= Q0
j (D

0),

−1 if q1
i (−1) = Q0

j (D
0) and q1

i (1) �= Q0
j (D

0),

0 otherwise.

It is useful to gather the incidence numbers incn
ij of (X,A) in a (possibly infinite)

incidence matrix INCn. By Theorem 6.4 (ii), the matrix INCn has only finitely
many nonzero entries in each column and row. Let (H∗, ∂∗) be a homology theory
with values in R-mod, and let νn be the corresponding isomorphism from (6.23) in
the case k = n.
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Theorem 6.36
Let (X,A) be a relative CW complex, and assume that (H∗, ∂∗) is additive if (X,A) is
infinite. Choose pushouts for (X, A), and let INCn be the associated incidence matrix.
Then for all n ≥ 1, we have a commutative diagram

Proof The theorem is trivially true if X is empty, so for the rest of the proof, let us assume
X is nonempty. We consider the following diagram in R-mod:

The middle rectangle commutes by definition of incidence numbers and Theorem 5.33.
The rectangle below commutes because every R-module homomorphism φ has the property
φ(k · x) = φ(x + · · · + x) = k · φ(x) for k ∈ Z. To see that the upper rectangle commutes,
we pick a base point x0 ∈ X0 and insert the auxiliary object Hn(Xn−1, x0) in the middle to
obtain the following diagram:
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The left hand square commutes because we saw in the proof of Theorem 5.7 that the LES
of the cofibration (Xn, Xn−1) is by construction just the triple sequence of (Xn,Xn−1, x0)

with the given identifications. The upper triangle commutes by definition of the differential in
the triple sequence. The neighboring triangle commutes because it comes from an underlying
commutative diagram of pairs of spaces. Similarly, the lower parallelogram commutes
because it comes from a commutative diagram of pairs of spaces before applying the
identifications in (5.4) and Proposition 5.6. One quickly checks that all these commutativities
imply the commutativity of the outer hexagonal diagram.

We can extend the left hand side of the first diagram with the two triangles

The upper right triangle commutes by naturality of the LESes of cofibrations as stated in
Theorem 5.7. The lower left triangle commutes by definition of the suspension isomorphism
H̃n(Sn) ∼= H̃n−1(Sn−1).

Now the leftmost composition in the extended diagram, starting from H0(•) at the bottom
left all the way up to Hn(Xn, Xn−1) at the top left equals ν−1

n ◦ ιi , where ιi : H0(•) →⊕
In

H0(•) is the inclusion of the i-th direct summand. Similarly, the right most composition,

starting from Hn(Xn−1, Xn−2) in the second row at the right all the way down to H0(•) at
the bottom right equals πj ◦νn−1, where πj : ⊕

In−1
H0(•) → H0(•) is the projection to the

j -th direct summand. Since the composition from Hn(Xn, Xn−1) to Hn−1(Xn−1, Xn−2) is
the n-th cellular differential ∂CW

n , commutativity of the diagram says that

πj ◦ νn−1 ◦ ∂CW
n ◦ ν−1

n ◦ ιi = ·incn
ij

for all i ∈ In and j ∈ In−1, hence νn−1 ◦ ∂CW
n ◦ ν−1

n = · INCn. ��
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Consequently, the product of two successive incidence matrices is zero. This
is remarkable because Theorem 5.41 saying πn(S

n, •) ∼= Z has an alternative
homotopy theoretical proof (by the Freudenthal suspension theorem). Therefore
an entirely homotopical definition of the notion of degree is possible from which the
relation INCn · INCn−1 = 0 does not look quite apparent.

Example 6.37 Let us go through our examples of CW complexes in Sect. 6.1, make the
corresponding cellular chain complexes explicit, and compute the homology. To do so, we fix
an ordinary homology theory (H∗, ∂∗) with values in Z-mod and coefficient module H0(•) ∼=
Z; of course we think of H∗ = H

sing∗ (−;Z).

1. For the n-sphere X = Sn with n ≥ 1 and with the CW structure given above, the cellular
chain complex CCW∗ (X,H∗) looks like

where the Zs occur in degree 0 and n. The differentials are always zero, even if n = 1,
by our description of incidence numbers in degree one. In fact we see that for every CW
complex with only one zero cell we must have ∂CW

1 = 0. It follows that

HCW
k (Sn) ∼= Hk(S

n) ∼=
{
Z k = 0, n

0 otherwise.

2. The chain complex CCW∗ (�g, H∗) of the surface of genus g is given by:

So only the second differential ∂CW
2 is of interest. This differential is represented by the

(2g × 1)-matrix INC2. To compute the entries, we recall that the 2-cell is glued in by
the surface word w = ∏g

i=1[ai, bi ] defining the pushout

Thus the gluing map runs through each 1-cell once in one direction and then another time
in the reverse direction. So the maps in Definition 6.35 are all null-homotopic, INC2 is the
zero matrix, and the cellular chain complex has vanishing differentials only. Apparently,
the homology of such a chain complex is just given by the chain modules. Thus

Hk(�g) ∼=

⎧
⎪⎨

⎪⎩

Z k = 0, 2,

Z
2g k = 1,

0 otherwise.



6.3 Computing Cellular Homology 159

3. The standard CW structure of real projective d-space X = RP
d given above has one cell

in each dimension. Thus CCW∗ (X, H∗) is of the form

with nonzero modules in degrees k = 0, . . . , d and the incidence matrices INCk are
(1 × 1)-matrices. Recall that the gluing map of the k-cell is the 2-fold covering map
Sk−1 → RP

k−1, which sends pairs of antipodal points to the same point. Therefore the
k-th incidence number is the degree of

where Sk−1 −→ Sk−1 ∨ Sk−1 collapses the equator. Because of Proposition 5.34, this
gives

INCk = (1 + (−1)k) =
{

0 k odd,

2 k even,

and hence the cellular chain complex looks like

depending on whether d is even or odd. It follows that

Hk(RP
d) =

⎧
⎪⎨

⎪⎩

Z k = 0 or (k = d and d is odd),

Z/2Z 0 < k < d and k is odd,

0 otherwise.

4. For complex projective d-space, X = CP
d , the situation is simpler. We only have cells

in even degrees so CCW∗ (X, H∗) looks like

and this chain complex has only zero differentials. So

Hk(CP
d) ∼=

{
Z 0 ≤ k ≤ 2d and k is even,

0 otherwise.
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6.4 Uniqueness of Ordinary Homology

In this section we will show that all ordinary and additive homology theories with
a fixed coefficient module restrict to one and the same theory on CW pairs. To
make this statement more precise, we define a cellular homology theory as in
Definition 3.20 except that:

• We replace “Top(2)” with “CW(2).”
• We replace “maps” with “cellular maps,” thus “homotopies” with “homotopies

through cellular maps.”
• Excision takes the form Hn(A,A ∩ B) ∼= Hn(X,B) whenever X is the union of

subcomplexes A and B.

Since homology theories are families of functors, a morphism of homology theories
should consist of natural transformations that are compatible with the boundary
transformations. This leads to the following definition that applies both to cellular
and non-cellular theories.

Definition 6.38
Let (H∗, ∂H∗ ) and (K∗, ∂K∗ ) be two homology theories with values in R-mod. A natural
transformation of homology theories is a family of natural transformations ω∗ : H∗ →
K∗ such that for all (X,A) and all n ∈ Z

commutes. If each ωn is a natural isomorphism, we call ω∗ an equivalence of homology
theories.

Homology theories and cellular homology theories form categories with mor-
phisms given by natural transformations. Equivalences are precisely the isomor-
phisms in these categories. Every homology theory (H∗, ∂∗) defines a cellular
homology theory (H∗ ◦ F, ∂∗ ◦ F) by precomposing with the forgetful functor
F : CW(2) −→ Top(2). The cellular excision axiom is then satisfied because the
CW triad (X;A,B) is excisive by Theorems 6.14, 2.15, and the five lemma. With
these remarks, we have the following joint reformulation of Theorem 6.22 and
Proposition 6.29.

Theorem 6.39
Let (H∗, ∂∗) be an ordinary and additive homology theory with values inR-mod. Then

there exists an equivalence of cellular homology theories ω∗ : H∗ ◦ F
∼=−→ HCW∗ .
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Moreover, for the coefficient module, we have ω0(•) = idH0(•) by construction.
Now we are ready to state and prove our final result.

Theorem 6.40
Suppose H∗ and K∗ are ordinary and additive homology theories with values in
R-mod. Let f : H0(•) → K0(•) be an R-homomorphism. Then there is a natural
transformation

ω
f∗ : H∗ ◦ F −→ K∗ ◦ F

of cellular homology theories with ω
f
0 (•) = f . If f is an isomorphism, then ω

f∗ is an
equivalence.

Proof By Theorem 6.39, it is enough to construct a natural transformation

ω̃
f∗ : HCW∗ −→ KCW∗

with ω̃
f
0 (•) = f so that ω̃

f∗ is a natural isomorphism if f is an isomorphism. To accomplish
this, we will actually construct a natural transformation

�̃
f∗ : CCW∗ (−,−; H∗) −→ CCW∗ (−,−; K∗)

of the cellular chain complex functors, which again has the properties that �̃
f
0 (•) = f and

that �̃
f∗ is a natural isomorphism if f is an isomorphism. Once we have done this, setting

ω̃
f
n (X, A) = Hn(�̃

f∗ (X, A)) does the trick because taking homology of a chain complex is
functorial, as we saw at the beginning of Sect. 4.1; and because composition with a functor
turns a natural transformation into a natural transformation and a natural isomorphism into a

natural isomorphism. The additional naturality condition ∂
CW,K
n ◦ ω̃

f
n = ω̃

f
n−1 ◦ ∂

CW,H
n is

just the naturality statement of Theorem 4.4 applied to the diagram

Now we construct �̃
f∗ . Fix a CW pair (X,A). We view it as a relative CW complex and pick

pushouts
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These determine isomorphisms ν
H∗
n and ν

K∗
n as in Theorem 6.36, and we define �̃

f∗ (X, A)

by the composition

CCW
n (X,A; H∗)

ν
H∗
n−−→

⊕

i∈In

H0(•)

⊕
i f−−−→

⊕

i∈In

K0(•)
(ν

K∗
n )−1

−−−−−→ CCW
n (X, A; K∗).

This defines a chain map because we have the diagram

The top and the bottom square commute by Theorem 6.36. The middle square commutes
because the vertical maps are diagonal matrices in block form with the same constant entries.

Clearly the chain map �̃
f∗ (X, A) is an isomorphism if and only if f is. Moreover, we have

ν
H∗
0 (•) = idH0(•) and ν

K∗
0 (•) = idK0(•), which gives �̃

f
0 (•) = f . So the proof is complete

once we show that:

(i) The chain map �̃
f∗ (X,A) is independent of the choice of the pushout or equivalently the

choice of the characteristic maps (Qn
i
, qn

i
)i∈In

,

(ii) The chain map �̃
f∗ (X,A) is natural in (X,A) with respect to cellular maps g : (X,A) →

(Y, B).

To address the first point, let (P n
i
, pn

i
)i∈In

be another family of characteristic maps. We

obtain induced homeomorphisms Pn
i

−1 ◦ Qn
i

of Dn/Sn to itself and thus a self-map of

Sn of degree ±1 via the identification un : Dn/Sn
∼=−→ Sn from (5.9). With the suspension

isomorphism H̃n(Sn) ∼= H0(•) implicit, Theorem 5.33 gives a diagram
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in which the two triangles commute. But also the square commutes because Theorem 5.33
asserts that the vertical arrows are given by the same diagonal matrices with entries ±1 and
the horizontal maps are likewise identical and of constant diagonal block form. Thus the

upper and the lower composition define the same morphism and �̃
f∗ (X,A) is independent of

the chosen pushout. This shows (i).
A cellular map g : (X, A) → (Y, B) induces a chain map

CCW∗ (X,A; H∗)
CCW∗ (g)−−−−−→ CCW∗ (Y, B; H∗).

This map can be made explicit as a matrix of degrees as we explain next. Given an open n-cell
en
i

for i ∈ In(X, A) and an open n-cell f n
j

for j ∈ In(Y, B), we define

incn
i,j (g) ∈ Z

as the degree of the composition

Dn/Sn−1 Qn
i (X)−−−−→ Xn/Xn−1 g−→ Yn/Yn−1 −→ Yn/(Yn \ f n

j )
Qn

j (Y )
−1

−−−−−−→ Dn/Sn−1

again using un : Dn/Sn−1 ∼=−→ Sn. Let INCn(g) be the matrix with entries incn
i,j

(g). By a
similar proof as for Theorem 6.36, we see that the diagram

commutes. As above, we now obtain a diagram of chain maps
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which shows (ii). ��

Of course both Theorems 6.39 and 6.40 also apply to cellular homology theories
directly: An ordinary and additive cellular homology theory can be computed from
the cellular chain complex and any homomorphism of the coefficient modules
of two such theories extends to a natural transformation of the theories. This
natural transformation is an equivalence if and only if the homomorphism is an
isomorphism.

In the proof, we have shown that any isomorphism f : H0(•)
∼=−→ K0(•) of R-

modules gives a natural isomorphism of the corresponding cellular chain complexes
CCW∗ (X,A;H∗) ∼= CCW∗ (X,A;K∗). Moreover, for every R-module M we have

constructed an ordinary and additive homology theory H∗ = H
sing∗ (−,−;M) in

Sect. 4.4. We thus proved existence and uniqueness of the cellular chain complex
with coefficients in M , which we can thus denote with no reference to any
homology theory whatsoever as CCW∗ (X,A;M). Correspondingly, we have the
cellular homology HCW∗ (X,A;M) with coefficients in M . If it is understood that
one always works in the category CW(2), it is fair to drop the letters “CW” and just
talk about “ordinary homology with coefficients in M” denoted by H∗(X,A;M).

If Z : R-mod −→ Z-mod = Ab denotes the forgetful functor and M is some
R-module, we have natural isomorphisms H∗(X,A;Z(M)) ∼= Z(H∗(X,A;M)) as
is immediate from Theorem 6.36. So one does not lose too much when restricting
attention to the case R = Z from the very start. This is why according to many
authors homology theories always have values in Ab. This has the virtue that one can
always talk about “homology groups,” which sounds more familiar than “homology
modules”. On the other hand, allowing values in R-mod is particularly convenient
when R is a field (e. g. R = Z/2Z). In that case, homology modules are vector
spaces and we find ourselves in the familiar terrain of linear algebra.

6.5 How to Proceed

Now that we have reached the end of our first course on algebraic topology, it should
be helpful to conclude with some final remarks and take a glimpse on more advanced
material in order to have an idea about what the next steps in your topological
curriculum should be.

First, let us point out that the uniqueness question for generalized homology
theories is more complicated. It is not true in general that a family of isomorphisms

{f∗ : H∗(•)
∼=−→ K∗(•)} determines an equivalence ω

f∗∗ : H∗ ◦ F −→ K∗ ◦ F of
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generalized homology theories with ω
f∗
n (•) = fn. It is true, however, that a natural

transformation ω∗ : H∗ −→ K∗ of generalized additive cellular homology theories

is an equivalence if (and only if) all components at the point ω∗(•) : H∗(•)
∼=−→

K∗(•) are isomorphisms [18, Bemerkung 3.54, p. 59]. To distinguish generalized
homology theories from ordinary homology, a lowercase “h” is often used for the
former as in h∗(X,A).

Let us give an example of a generalized homology theory. The Freudenthal
suspension theorem says that for each fixed n the sequence of homotopy groups
πn+k(�

kX/A, •) stabilizes for sufficiently large k and it turns out that

hn(X,A) = colimk πn+k(�
kX/A, •)

defines a generalized cellular homology theory with values in Ab called stable
homotopy (we do not go into the details of the boundary map). The coefficient
group hn(•) = colimk πn+k(S

k, •) is called the n-th stable stem, usually denoted
by πS

n . We proved that πS
0

∼= Z in Theorem 5.41. In contrast, πS
n is finite for n > 0

by a result of J. P. Serre [22]. Whenever R is a ring with Q ⊆ R, we thus have πS
k ⊗Z

R = 0 for k �= 0 and πS
0 ⊗Z R ∼= R. Whence Theorem 6.40 and the remarks below

the proof say that the homology theory colimk πn+k(�
kX/A, •) ⊗Z R is equivalent

to Hn(X,A;R). Up to algebraic extension problems, it is possible to compute
generalized cellular homology h∗(X,A) with values in R-mod from ordinary
homology by means of the so-called Atiyah–Hirzebruch spectral sequence [3].
The “E2-page” is given by E2

p,q = Hp(X,A;hq(•)). Explaining what all this
means lies beyond the scope of this course, an exposition of the topic can be found
in [9]. But things simplify if Q ⊆ R. In this case the spectral sequence collapses
and the generalized homology theory h∗ is equivalent to the generalized homology
theory given by

⊕
p+q=n Hp(−,−;R) ⊗R hq(•) with boundary maps

⊕
∂ ⊗ id.

The equivalence is given by the homological Chern character

chn :
⊕

p+q=n

Hp(X,A;R) ⊗R hq(•)
∼=−−→ hn(X,A)

defined as follows. By the last remark, we have an equivalence of homology theories

⊕

p+q=n

Hp(X,A;R) ⊗R hq(•) ∼=
⊕

p+q=n

(colimk πp+k(�
kX/A, •) ⊗Z R) ⊗R hq(•) ∼=

∼=
⊕

p+q=n

colimk πp+k(�
kX/A, •) ⊗Z hq(•).

For an element a ⊗ b ∈ colimk πp+k(�
kX/A, •) ⊗Z hq(•), let f : (Sp+k, •) −→

(�kX/A, •) with large k be a representative of a. We define Dp,q(a ⊗ b) as the
image of b under the composition

hq(•)
susp.−−→ hp+q+k(S

p+k, •)
hp+q+k(f )−−−−−−→ hp+q+k(�

kX/A, •)
desusp.−−−−→ hn(X/A, •)
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which gives an element of hn(X/A, •) ∼= hn(X,A). Then the coproduct map

⊕

p+q=n

colimk πp+k(�
kX/A, •) ⊗Z hq(•)

⊕
p,q Dp,q−−−−−−→ hn(X,A)

is another equivalence of cellular homology theories. This construction is due to
A. Dold [5]. In this sense, one can also compute generalized homology h∗(X,A) for
a CW pair (X,A) if one only knows the coefficient modules h∗(•). But this is often
the heart of the matter. For example, the group structure of the stable stems πS

n is at
the time of writing only known for n ≤ 90 and even here, a few uncertainties must be
accepted [15]. Another example of a generalized homology theory is called bordism
where the computation of coefficient groups amounts to classifying closed smooth
manifolds up to being bordant. Two manifolds M1 and M2 are called bordant if
M1

∐
M2 bounds a manifold of one dimension higher. If one takes orientations into

account, this classification becomes again a difficult task, which has created a vast
amount of research [23].

Homology has a dual concept called cohomology. The definition of a cohomol-
ogy theory is obtained by reversing all arrows in the Eilenberg–Steenrod axioms
resulting in a family of contravariant functors H ∗. Correspondingly, singular
cohomology arises from the cochain complex obtained by dualizing the singular
chain complex. What might sound like a dull formal exercise turns out to be a
fruitful idea: unlike homology, singular cohomology possesses a multiplicative
structure that turns it into a graded ring and homology becomes a right module
over that ring. Moreover, the introduction of cohomology is particularly rewarding
for the study of manifolds. In fact, the condition of being locally Euclidean has the
global consequence that there exists a duality isomorphism between homology and
cohomology known as Poincaré duality. By means of a universal coefficient the-
orem, this uncovers an otherwise hidden symmetry in the homology of manifolds.
Cohomology is covered in all standard textbooks on algebraic topology, including
but not limited to [4, 8, 18–20, 29].

Finally, the (debatably) most important example of a generalized cohomology
theory is called K-theory. For a compact Hausdorff space X, the set Vect(X)

of isomorphism classes of finite dimensional C-vector bundles over X becomes a
commutative monoid by taking direct sums of vector bundles. The forgetful functor
from abelian groups to commutative monoids has a left adjoint called Grothendieck
completion, and we define K0(X) as the Grothendieck completion of Vect(X). The
reduced K-group K̃0(X) of a pointed space X is the kernel of the homomorphism
induced by • → X. We obtain the relative K-group K0(X,A) = K̃0(X/A),
which gives rise to negative K-groups by setting K−n(X,A) = K̃0(�nX/A). The
celebrated Bott periodicity theorem says that K−n(X) ∼= K−n−2(X), hence the
LES of K-theory reduces to a six-term exact sequence
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K-theory is a powerful tool that was successfully applied to several classical
problems in topology. For example, it was used to answer the beautiful question
on the maximal number of linearly independent vector fields on spheres [1]. The
standard reference for an introduction to topological K-theory is [2].

Exercises

6.1 Let X be a CW complex, and let A ⊆ X be a subcomplex. Show that X/A is a
CW complex.

6.2 Suppose X is a CW complex and the base point x0 is a 0-cell. Show that the
cone CX, the suspension SX, and the reduced suspension �X are CW complexes.

6.3 Let p : Y → X be a covering space of a CW complex X. Show that setting
Yn = p−1(Xn) defines the filtration of a CW structure on Y . Show that p restricts
to a homeomorphism on each open cell.

6.4 Show that there is a covering map p : �g → �h if and only if g = n(h−1)+1
for some positive integer n. Hint: Euler characteristic.

6.5 Let X be a connected CW complex, and suppose that X has at least two
different 0-cells x1, x2 ∈ X0. Compute the ordinary homology of Y = X/{x1, x2}
in terms of the homology of X.

6.6 Compute the ordinary homology of the Klein bottle from the cellular chain
complex.

6.7 Find the left adjoint to the functor Set −→ CW, which turns a set Y into the
discrete CW complex X with X = X0 = Y .



AQuotient Topology

Given an equivalence relation “∼” on a topological space X, the quotient topology
on the set of equivalence classes X/∼ is determined by requiring that the projection
p : X → X/∼ be continuous and satisfy the universal property

that every continuous map h : X −→ Z with h(x1) = h(x2) whenever x1 ∼ x2
descends to a unique continuous map h : X/∼ −→ Z so that h = h ◦ p. Of course,
one can recover the equivalence relation on X from the projection p because the
equivalence classes in X are precisely the preimages of the points in X/∼ under
p. In fact, every surjective map of sets f : X −→ Y descends to a bijection
f : X/∼ −→ Y where x ∼ y if and only if f (x) = f (y). This raises the
problem to abstractly characterize those surjective maps f : X −→ Y of spaces
for which f is a homeomorphism, meaning that Y carries the quotient topology
with respect to ∼. These maps are called quotient maps or identification maps,
and the characterization problem is solved by the following lemma.

Lemma A.1
Let f : X → Y be a surjective map of topological spaces (no continuity assumption).
Then the following are equivalent:

(i) The map f induces a homeomorphism f : X/∼ ∼=−→ Y , where x ∼ y if and only
if f (x) = f (y).

(continued)
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(ii) For all spaces Z and all maps g : Y → Z of sets, the map g ◦ f is continuous if
and only if g is continuous.

(iii) A subset U ⊆ Y is open if and only if f −1(U) ⊆ X is open.
(iv) A subset U ⊆ Y is closed if and only if f −1(U) ⊆ X is closed.

Proof It is clear that (iii) and (iv) are equivalent.
(iii) ⇒ (i). The map f is bijective by construction. It is continuous by the universal

property of the quotient X/∼ because f is continuous by one direction of (iii). To see f

is open, let U ⊆ X/∼ be an open subset. Then V = p−1(U) ⊂ X is open because
p : X → X/∼ is continuous. Moreover, we have f −1(f (V )) = V , so f (V ) = f (U) is
open by the other direction of (iii).

(i) ⇒ (ii). Let g : Y → Z be a map of sets. Suppose g is continuous. By (i), the map f

is a homeomorphism and in particular continuous. So g ◦ f = g ◦ f ◦ p is a composition of
continuous maps, hence continuous. If on the other hand g ◦ f is continuous, then g ◦ f is

continuous by the universal property of the quotient topology on X/∼. Hence g = g◦f ◦f
−1

is continuous as well.
(ii) ⇒ (iii). Let τY be the given topology on Y . It is clear that (iii) defines another topology

τq on Y (called the final topology with respect to f ). We assume that Y endowed with τY
satisfies (ii). But since we already proved (iii) ⇒ (i) and (i) ⇒ (ii), we know that (ii) also holds
true if Y is endowed with the topology τq . Applying (ii) to the continuous maps g = id(Y,τY )

and g = id(Y,τq ), we thus see that f is continuous with respect to both topologies on Y . But
then we can apply (ii) in the other direction. Since the composition idY ◦f = f is continuous
no matter if we consider idY as a map (Y, τY ) → (Y, τq) or as a map (Y, τq) → (Y, τY ), we
conclude that both these maps are continuous. Hence τY = τq , which proves (iii). �	

As a word of warning, identification maps need neither be open nor closed.
For example, take f : [0, 3) → S1 with f (t) = exp(iπt). Then the open subset
[0, 1) and the closed subset [2, 3) of [0, 3) have the same image under f which is
neither open nor closed. By definition, however, injective identification maps are
homeomorphisms. In view of the equivalent characterizations in Lemma A.1, this
observation provides an elegant strategy for showing that a map is a homeomor-
phism. Another convenient fact is that the property of being an identification map is
preserved under products with locally compact spaces as the following Proposition
reveals.

Proposition A.2
Let X, Y , and K be spaces and suppose K is locally compact.

(i) If X is compact, then the projection pY : X × Y → Y is closed.
(ii) If f : X → Y is an identification map, then so is f × idK : X × K → Y × K .
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Proof Part (i). Let C ⊆ X × Y be a closed subset. We need to show that Y \ pY (C) is
open. So let y ∈ Y \ pY (C). Then for all x ∈ X, the pair (x, y) does not lie in C. Since C

is closed, we conclude that each x ∈ X comes with open neighborhoods Ux ⊆ X of x and
Vx ⊆ Y of y such that (Ux ×Vx)∩C = ∅. Since X is compact, there are finitely many points
x1, . . . , xk ∈ X such that

⋃k
i=1 Uxi = X. Set V = ⋂k

i=1 Vxi . Then (X × V ) ∩ C = ∅, so
V ⊆ Y \ pY (C), which shows that y ∈ V is an inner point of Y \ pY (C).

Part (ii). Let f : X → Y be an identification map. We use the characterization in
Lemma A.1 (ii) to show that f × idK is an identification map, too. So let g : Y × K → Z be
a map of sets and set h = g ◦ (f × idK). Assuming h is continuous, we need to show that g

is continuous, the converse being trivial. Consider an open neighborhood U ⊆ Z of an image
point g(y0, k0) ∈ U . Since f is surjective, we find x0 ∈ X with f (x0) = y0. Therefore
h(x0, k0) ∈ U and by continuity of h and local compactness of K , there exists a compact
neighborhood N ⊆ K of k0 such that h({x0} × N) ⊆ U . Set

A = {y ∈ Y : g({y} × N) ⊆ U}.

Since y0 ∈ A, it remains to show that A ⊆ Y is open. Since f is an identification map, this is
equivalent to f −1(A) ⊆ X being open. But

f −1(A) = {x ∈ X : h({x} × N) ⊆ U},

so for the complement, we have

X \ f −1(A) = pX(h−1(Z \ U) ∩ (X × N)),

which is closed because the projection pX : X × N → X is closed by (i). �	
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[G,G] Derived subgroup, p. 5
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carr(x) Carrier of the point x in a simplicial complex, p. 87
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SX Suspension of the space X, p. 121
T (X•) Skeleton mapping telescope of the CW complex X, p. 161
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X/∼ Quotient space, p. 181
XK Space of maps from K to X, p. 35
Xn n-skeleton of a CW complex, p. 150
X[r] r-th iterated barycentric subdivision of X, p. 86
XG Presentation complex of the group G, p. 64
X �Y Coproduct of objects X and Y , p. 22
X ∨Y One point union of X and Y , p. 23



Index

A
Abelianization, 5
Absolutely finite, 141
Abstract

nonsense, 13
simplicial complex, 61

Acyclic cofibration, 47
Additive, 97
Additivity axiom, 97
Adjoint functor, 9
Adjunction space, 22
Amalgamation, 28
Antipode theorem, 128
Arrow, 2
Atiyah–Hirzebruch spectral sequence,

165
Attaching

map, 24
space, 22

B
Barycentric subdivision, 75, 89, 90
Base inclusion, 22
Betti number, 153
Bordism, 166
Borsuk, K., 131
Borsuk–Ulam theorem, 128
Bott periodicity, 166
Boundary homomorphism, 62, 80
Braid lemma, 104
Brouwer fixed point theorem, 128

C
Carrier, 76
Category, 2
Cell, 136
Cellular

chain complex, 146

homology, 146
homology theory, 160
map, 141
pushout, 145

Chain
complex, 62
homotopy, 84

equivalence, 85
inverse, 85

map, 74, 79
module, 61

Characteristic map, 136
Chern character, 165
Class, 2
Cochain complex, 166
Cocone, 18
Cocontinuous functor, 29, 30
Codomain, 2
Coefficient module, 73
Coefficients, 96
Coequalizer, 28
Cofibration, 41
Coherent, 136
Cohomology, 166
Cokernel of a morphism, 31
Colimit, 18
Collapsed space, 22
Commutator, 5
Comparison map, 51
Component, 6
Cone

of a diagram, 16
of a space, 22

Connected category, 34
Connecting homomorphism, 82
Contractible, 4
Contravariant functor, 4
Coproduct, 19
Counit, 10
Covariant functor, 4

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Kammeyer, Introduction to Algebraic Topology, Compact Textbooks
in Mathematics, https://doi.org/10.1007/978-3-030-98313-0

179

https://doi.org/10.1007/978-3-030-98313-0


180 Index

CW complex, 135
CW pair, 141

D
Deformation retraction, 4
Degree, 120
�-complex, 61
Derived subgroup, 5
Diagram, 16
Differential, 62, 80
Dimension, 141

axiom, 73
Direct sum, 19
Discrete category, 17
Domain, 2
Double mapping cylinder, 50
DR pair, 47
Dual, 18
Dually equivalent, 8

E
Eckmann–Hilton duality, 53
Eilenberg–Steenrod axioms, 72
Equalizer, 17
Equivalence

of categories, 8
of homology theories, 160

Euler characteristic, 152
Exact, 68
Excision, 71, 72, 88
Excisive, 114

F
Face, 59

map, 93
Fiber bundle, 52
Fibration, 52
Final topology, 136
Finite

additivity, 97
type, 61, 141

Finitely
generated, 11
presented, 11

Five lemma, 111
Forgetful functor, 5
Free

group, 10
product of groups, 20
vector space, 5

Freudenthal suspension theorem, 158, 165

Functor, 4
Fundamental

class, 99
group, 5
groupoid, 33
theorem of algebra, 126

G
Generalized

cohomology theory, 166
homology theory, 73

Generator, 11
Gluing map, 144
Grothendieck completion, 166

H
Hairy ball theorem, 122
Ham sandwich theorem, 131
Homological algebra, 81
Homologous, 63
Homology, 63

theory, 72
Homotopy, 3

category, 3
colimit, 27, 148
commutative, 51
equivalence, 3
extension property (HEP), 41
group, 56
invariance, 72
inverse, 3
lifting property (HLP), 52
pushout, 27, 51

Hopf bundle, 140
Hurewicz, W., 100

theorem, 98

I
Identification map, 169
Incidence number, 155
Index category, 16
Initial

condition, 41, 52
object, 31

Invariant factors, 65
Isomorphism of categories, 8

J
Join, 86
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K
Kernel of a morphism, 31
Klein bottle, 55, 58
K-theory, 166

L
Lebesgue lemma, 36
Left

adjoint, 9
exact, 77

Limit, 17
Locally small category, 10
Long exact sequence (LES), 68, 72
Loop space, 110

M
Mapping

cone, 23
cylinder, 23
telescope, 148

Mayer–Vietoris sequence, 114, 145
Model category, 53
Morphism, 2
Multiplicative structure, 166

N
Natural

isomorphism, 8
transformation, 6

of homology theories, 160
Neighborhood deformation retract (NDR),

45
Null-homotopic, 106

O
Object, 2
One point union, 19
Opposite category, 4
Ordinary homology theory, 73
Orientation, 74

P
Poincaré duality, 166
Pointed

category, 31
homotopy

category, 3
equivalence, 4

Presentation, 11

Presentation complex, 56
Prism, 86
Product, 11
Projective space, 140
Pullback, 13
Pushout, 21

Q
Quotient

map, 169
topology, 169

R
Reduced homology, 106
Relative

CW complex, 141
simplicial homology, 66
singular homology, 81

Relatively finite, 141
Relator, 11
Retract, 31
Retraction, 4
Right

adjoint, 9
exact, 77

S
Semidirect product, 70
Short exact sequence (SES), 69, 83
Simplex, 59
Simplicial

approximation, 75, 76
complex, 61
homology, 63
map, 74

Singular
cohomology, 166
homology, 79

Skeleton
of a category, 9
of a CW complex, 136
of a �-complex, 61, 112

Small, 16
Smith normal form, 66
Snake lemma, 81
Split SES, 69
Stable

homotopy, 165
stem, 165

Star, 76
Strong deformation retraction, 4
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Subcomplex, 66, 88, 141
Surface, 54, 139

group, 55
word, 55

Suspension, 108

T
Tensor product, 5
Terminal object, 31
Topological sum, 19
Transfer, 129
Triple sequence, 84, 104
Trivial cofibration, 47

U
Ulam, S.M., 131

Universal
coefficient theorem, 166
property, 11, 14, 17, 28

V
Van Kampen’s theorem, 36, 38, 53, 145
Vertex, 59
Vietoris, L., 119

W
Wedge sum, 19
Well-pointed, 108

Z
Zero object, 31
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